Approximating TSP with Neighborhoods in Doubling Metrics

Hubert Chan University of Hong Kong

What is a Metric Space?

Points V with distance function d

Examples:

- Distances between cities
- Round trip delays between internet hosts
- Dissimilarity measures between documents

Simplifying Assumptions:

- 1. Triangle Inequality: $d(x,y) \leq d(x,z) + d(z,y)$
- 2. Symmetry: d(x,y) = d(y,x)

Traveling Salesman Problem

Traveling Salesman Problem: What is the shortest tour that visits each city once?

- Classical NP-complete Problem
- Application in circuit design, logistics
- Practical instances are solved routinely

Important Question:

Which metrics admit good algorithmic guarantees?

Approximating TSP on Different Metric Spaces

General

Roadmap

✓ TSP on Metric Spaces

✓ Hardness and Approximation

- Special Classes of Metric Spaces
 - Euclidean Metrics and Doubling Dimension
- General Framework for Approximating TSP
 - Divide and Conquer
- TSP with Neighborhoods

Low Dim Euclidean Metrics

Nodes in *k*-dimensional space

Each node has k coordinates.

Distance function is the usual Euclidean distance.

1

$$x = (x_1, x_2, ..., x_k)$$
$$y = (y_1, y_2, ..., y_k)$$

Generalization: Metric Spaces with Low **Doubling Dimension**

Doubling Dimension

Generalization of Euclidean Metrics A low-dim Euclidean metric has small doubling dim.

[Clarkson '99] used the notion for nearest neighbor queries.

Received recent attention in CS community: [Gupta, Krauthgamer, Lee 2003]

Hard problems more tractable: Quasi-polynomial time approximations for TSP, k-median, facility location [Talwar 2004]

More good algorithms for near-neighbor [Krauthgamer Lee 05] [Beygelzimer, Kakade, Langford '06]

Ball B(x, R)

A ball B(x, R)centered at x with radius R consists of points within distance R from x.

Doubling Dimension

A metric (V,d) has doubling dimension at most k if

for any R > 0, every ball of radius 2Ris a union of at most 2^k balls of radius R.

Examples:

A metric space in k-dim Euclidean space or k-dim manifold has doubling dim O(k).

R-Net

Radius R > 0

An *R*-net for *V* is a subset $N \subseteq V$ s.t.

- 1. Covering: Every point in *V* is within distance *R* of some point in *N*.
- 2. Packing: Points in *N* are more than distance *R* away from one another.

R-nets & doubling dimension

Useful Property:

Given a metric (*V*, *d*) with **doubling dimension** *k* and any *r*-net *N*, any ball of radius *R* contains at most $(2R/r)^k$ net points in *N*.

Roadmap

- ✓ TSP on Metric Spaces
 - ✓ Hardness and Approximation
- ✓ Special Classes of Metric Spaces
 - ✓ Euclidean Metrics and Doubling Dimension
- General Framework for Approximating TSP
 - Divide and Conquer
- TSP with Neighborhoods

Easy Instances of TSP

Optimal Tour for Tree Metric

- Tour enters and leaves subtree through a single point
 - True for smaller subtrees too.

Approach to approximate TSP in general:

- 1. Decompose metric recursively into clusters
- 2. Assign few points in each cluster as portals
- 3. Restrict to tour that enters and leaves clusters via portals ("portal respecting")

General Framework for TSP [Arora, Talwar]

1. Randomized Hierarchical decomposition of metric into "clusters"

Level *i* cluster diameter D_i such that $D_{i-1} \leq D_i/4$

- 2. Assign portals to each cluster (some appropriate net)
- 3. Show existence of a "good" portal respecting tour
- 4. Dynamic Program to find best portal-respecting tour. $B = \# \text{ portals in child clusters} \Rightarrow \text{Run-time} = 2^{O(B \log B)}$

Doubling metric:
$$B = (\log n)^{O(k)}$$

How to Divide? - Padded Decomposition

*D***-Bounded** β -Padded Decomposition Random partition of (*V*,*d*) s.t.

- 1. Each cluster has diameter at most *D*.
- 2. If a set *S* has diameter δ , Pr[*S* separated] $\leq \beta \delta / D$.

Theorem

For any *D*, a metric with doubling dimension k has *D*-bounded O(k)-padded decomposition.

How to choose portals? - *R*-nets

Useful Property:

Given a metric (*V*, *d*) with **doubling dimension** *k* and any *r*-net *N*, any **ball of radius** *R* contains at most $(2R/r)^k$ net points in *N*.

Approximating TSP on Different Metric Spaces

General

Roadmap

- ✓ TSP on Metric Spaces
 - ✓ Hardness and Approximation
- ✓ Special Classes of Metric Spaces
 - ✓ Euclidean Metrics and Doubling Dimension
- General Framework for Approximating TSP
 ✓ Divide and Conquer
- TSP with Neighborhoods

Motivation

- You have a list of items and the shops where each item can be found. What is the shortest tour for buying every item?
- 2. There are outbreaks of several viruses. What is the shortest tour to collect a sample for each virus?

Problem Definition

Input: a metric space (V, d) and a collection of subsets (a.k.a regions or neighborhoods) R_1 , R_2 , ..., R_n in V.

Output: a tour with shortest length that visits each neighborhood R_i at least once.

General Version is Hard

- As hard as the classical Traveling Salesman Problem (TSP), which is APX-hard for general Euclidean metrics.
- 2. Generalizes Set Cover and Hitting Set, which is $\Theta(\log n)$ -hard to approximate.

Lower Bound [Halperin, Krauthgamer '03] Inapproximability threshold: $\Omega(\log^{2-\epsilon} n)$

Upper Bound [GKR00 + FRT04]

O(log $N \log k \log n$) n = # of regions N = # of points k = # of points in a region

Special Cases (1)

The underlying metric has bounded *doubling dimension*: a packing inside a bounded subset has a limited number of points.

TSP is APX-hard without this assumption.

The very particular case of Euclidean plane is often considered.

Special Cases (2)

The regions are "fat".

For $\alpha \ge 1$, region *R* is α -fat if there exist a point *x* and r > 0 s.t.

$$B(x,r) \subseteq R \subseteq B(x,\alpha r)$$

24

Special Cases (3)

The regions have limited intersection.

weakly disjoint

arbitrary intersection

Formally, related to α -fat regions. The "cores" do not intersect.

Some Results

- (1) Euclidean Plane
 (2) Fat Regions
 (3) Weakly Disjoint Regions
 (4) Decisions of Similar Size
- (4) Regions of Similar Size

Assumptions

Approx Ratio

DM03	(1)-(4)	PTAS
dBGK05	(1),(2),(3)	O(1)
EFS06	(1),(2),(4)	O(1)

Best Previous Result

Mitchell (SODA '07)

PTAS for Euclidean plane, fat and weakly disjoint regions (assumptions (1)-(3))

Techniques

- 1. Guillotine subdivision
- 2. Only applies to Euclidean plane, would not work even for 3 dimensions.

Our Contribution

- More general underlying metric space (with bounded doubling dimension)
- Combining and generalizing the notion of fatness and disjointness
- A group of regions $\{R_j\}$ is α -fat weakly disjoint if there exist r > 0 and for each R_j , a point z_j s.t.
- (1) $\{z_j\}$ is an *r*-packing, i.e., any 2 such points are at least distance *r* apart.
- (2) Each R_j is contained in $B(z_j, \alpha r)$.

Our Result

Theorem [QPTAS for TSPN. C., Elbassioni SODA'10]

For metric space with doubling dimension k, Δ groups of α -fat weakly disjoint regions, we have $(1+\epsilon)$ approx in time $\exp((\Delta/\epsilon)^k O(\alpha)^{k^2} \log^k n)$, where n is the
total number of regions.

Remark

We have weakened assumptions (1)-(4). If we do not bound the number Δ of groups, the problem remains APX-hard.

Techniques

General Framework for TSP [Arora, Talwar]

1. Randomized Hierarchical decomposition of metric into "clusters"

Level *i* cluster diameter D_i such that $D_{i-1} \leq D_i/4$

- 2. Assign portals to each cluster (some appropriate net)
- 3. Show existence of a "good" portal respecting tour
- 4. Dynamic Program to find best portal-respecting tour. $B = \# \text{ portals in child clusters} \Rightarrow \text{Run-time} = 2^{O(B \log B)}$

Technical Hurdle

When a region is divided, which part should be visited?

Each part is further subdivided recursively, leading to exponential number of cases to be considered.

Pruning the Search

If a set *S* has diameter δ , Pr[*S* first sep. at level *i*] $\leq \beta \delta / D_i$.

For some small $\gamma > 0$, when the sub-region gets smaller than γD_i , pick any point and stop further partitioning the subregion.

If there are *L* levels, the expected increase in cost is at most $\sum_i \beta \delta / D_i \cdot \gamma D_i = L \beta \gamma \delta$

Summing over all regions, we have $L\beta\gamma \times$ Sum of Diameters

Structural Lemma

Lemma If there are Δ groups of regions, then Sum of Diameters $\leq \Delta O(\alpha)^k \text{ OPT}$

Picking the pruning parameter γ appropriately, we can show the pruning procedure increases the cost by at most ϵ OPT.

Theorem [QPTAS for TSPN]

For metric space with doubling dimension k, Δ groups of α -fat weakly disjoint regions, we have $(1+\epsilon)$ approx in time $\exp((\Delta/\epsilon)^k O(\alpha)^{k^2} \log^k n)$, where n is the
total number of regions.

Open Problems

Is there a PTAS for the case when the underlying metric is Euclidean (with appropriate assumptions on the regions)?

Note that a PTAS is not known for TSP on doubling metrics.