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What is a Metric Space?
Points V with distance function d
Examples:

y

zExamples:

• Distances between cities
• Round trip delays between internet hosts x yp y
• Dissimilarity measures between documents

Simplifying Assumptions:
1. Triangle Inequality: d(x,y) ≤  d(x,z) + d(z,y)

2. Symmetry: d(x,y) =  d(y,x)
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Traveling Salesman Problem

Traveling Salesman Problem: What is the 
?

Cl i l NP l t P bl

shortest tour that visits each city once?

 Classical NP-complete Problem
 Application in circuit design, logistics
 Practical instances are solved routinelyy

Important Question:
Which metrics admit good algorithmic guarantees?
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Approximating TSP on Different Metric Spaces

General distance NP-hard to approx within any 
factor

General

function

Metrics

factor

1.5-approx
NP hard to approx better than 174/173NP-hard to approx better than 174/173

Doubling 
Metrics

(1 + )-approx in time   [Talwar]
exp{ (k/ log n)O(k)}        (QPTAS)

k-Dim Euclidean 
Metrics

Metrics

(1 + )-approx in time [Arora][Rao, Smith]
n exp{(k/)O(k)} + O(kn log n) (PTAS)

p{ ( g ) } (Q )
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Roadmap
 TSP on Metric Spaces



 Special Classes of Metric Spaces

 Hardness and Approximation

• Euclidean Metrics and Doubling Dimension

• Divide and Conquer
 General Framework for Approximating TSP

 TSP with Neighborhoods
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Low Dim Euclidean Metrics
Nodes in k-dimensional space

Each node has k coordinates. x = (x1, x2, …, xk)

Distance function is the usual 
Euclidean distance.

x = (x1, x2, …, xk)

222 )()()()( yxyxyxyxd 

y = (y1, y2, …, yk)
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Generalization: Metric Spaces with 
Low Doubling Dimension

7



Doubling Dimensiong

Generalization of Euclidean Metrics
A low-dim Euclidean metric has small doubling dim.

[Clarkson ’99] used the notion for nearest neighbor queries.

Received recent attention in CS community: 
[Gupta, Krauthgamer, Lee  2003]

Hard problems more tractable: Quasi-polynomial time 
approximations for TSP, k-median, facility location

[T l 2004][Talwar 2004]

More good algorithms for near-neighbor 
[Krauthgamer Lee 05] [Beygelzimer Kakade Langford ’06]
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[Krauthgamer Lee 05] [Beygelzimer, Kakade, Langford 06]



Ball B(x R)Ball B(x, R)

A ball B(x, R)
centered at x with 
radius R consists of 
points within 
distance R from

x

distance R from x.
R
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Doubling Dimension
A metric (V,d) has doubling dimension at most k if

for any R > 0, everyfor any R  0, every 
ball of radius 2R
is a union of at mostis a union of at most 
2k balls of radius R.

Examples: 
A metric space in k-dim Euclidean space or k-dim 

if ld h d bli di O(k)
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manifold has doubling dim O(k).



R-Net

Radius R > 0

An R-net for V is a 
subset N  V s.t.

1. Covering: Every point in 
V is within distance R of 
some point in N.

2. Packing: Points in N are 
more than distance R
away from one another.
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R-nets & doubling dimension

Useful Property:
Gi t i ( ) ith d bli di i d tGiven a metric (V, d) with doubling dimension k and any r-net N, 
any ball of radius R contains at most (2R/r)k net points in N.

RR

≥ r
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Roadmap
 TSP on Metric Spaces



 Special Classes of Metric Spaces

 Hardness and Approximation

 Euclidean Metrics and Doubling Dimension

• Divide and Conquer
 General Framework for Approximating TSP

 TSP with Neighborhoods
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Easy Instances of TSP

Optimal Tour for Tree Metric

 Tour enters and leaves subtree 
through a single point

 True for smaller subtrees too.

Approach to approximate TSP in general:

1. Decompose metric recursively into clusters

2. Assign few points in each cluster as portals
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3. Restrict to tour that enters and leaves clusters 
via portals (“portal respecting”)



General Framework for TSP [Arora, Talwar]

DDi

Di 1

x y

Di-1

1. Randomized Hierarchical decomposition of metric into “clusters”

Level i cluster diameter Di such that Di-1 ≤ Di /4

2. Assign portals to each cluster (some appropriate net)

3. Show existence of a “good” portal respecting tour
Doubling metric:
B = (log n)O(k)
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4. Dynamic Program to find best portal-respecting tour.
B = # portals in child clusters  Run-time = 2O(B log B)



How to Divide? - Padded Decomposition
D-Bounded β-Padded Decomposition
Random partition of (V,d) s.t.

D
Random partition of (V,d) s.t.

1. Each cluster has diameter at 
most D.most D.

2. If a set S has diameter δ,
Pr[S separated] ≤ β δ / D.

Theorem
For any D, a metric with doubling dimension k has D-
bounded O(k)-padded decomposition. 
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How to choose portals? - R-nets

Useful Property:
Gi t i ( ) ith d bli di i d tGiven a metric (V, d) with doubling dimension k and any r-net N, 
any ball of radius R contains at most (2R/r)k net points in N.

RR

≥ r
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Approximating TSP on Different Metric Spaces

General distance NP-hard to approx within any 
factor

General

function

Metrics

factor

1.5-approx
NP hard to approx better than 174/173NP-hard to approx better than 174/173

[SODA’08 C., Gupta] (1 + )-approx in sub-exp time ∩>0 exp{n}

Doubling 
Metrics

(1 + )-approx in time   [Talwar]
exp{ (k/ log n)O(k)}        (QPTAS)

k-Dim Euclidean 
Metrics

Metrics

(1 + )-approx in time [Arora][Rao, Smith]
n exp{(k/)O(k)} + O(kn log n) (PTAS)

p{ ( g ) } (Q )
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Roadmap
 TSP on Metric Spaces



 Special Classes of Metric Spaces

 Hardness and Approximation

 Euclidean Metrics and Doubling Dimension

 Divide and Conquer
 General Framework for Approximating TSP

 TSP with Neighborhoods
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MotivationMotivation

1. You have a list of items ou a e a s o e s
and the shops where 
each item can be found.  
What is the shortest tourWhat is the shortest tour 
for buying every item?

2. There are outbreaks of 
several viruses.  What is 
the shortest tour to collect 
a sample for each virus?
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Problem Definition

Input: a metric space (V, d) and p p ( , )
a collection of subsets (a.k.a 
regions or neighborhoods) R1, 
R R in VR2, …, Rn in V.

Output: a tour with shortest 
l th th t i it hlength that visits each 
neighborhood Ri at least once.
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General Version is Hard
1. As hard as the classical Traveling Salesman 

Problem (TSP) which is APX-hard for generalProblem (TSP), which is APX hard for general 
Euclidean metrics.

2. Generalizes Set Cover and Hitting Set, which is 
Θ(log ) hard to appro imateΘ(log n)-hard to approximate.

Lower Bound [Halperin, Krauthgamer ’03]
Inapproximability threshold: (log2-² n)

Upper Bound [GKR00 + FRT04]
O(log N log k log n)
n = # of regions
N = # of points
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N  # of points
k = # of points in a region



Special Cases (1)Special Cases (1)

The underlying metric hasThe underlying metric has 
bounded doubling dimension: 
a packing inside a bounded 

Rsubset has a limited number of 
points.

R

≥ r
TSP is APX-hard without this assumption.

The very particular case of Euclidean plane is often 
considered.
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Special Cases (2)p ( )
The regions are “fat”.

fat not fat

For α ≥ 1, region R is α-fat if there exist a point x
and r > 0 s.t.

B(x, r) ⊆ R ⊆ B(x, α r)
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Special Cases (3)p ( )
The regions have limited intersection.

weakly disjoint arbitrary intersection

Formally, related to α-fat regions.  The “cores” do not 
intersectintersect.
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Some Results
(1) Euclidean Plane
(2) Fat Regions(2) Fat Regions
(3) Weakly Disjoint Regions
(4) Regions of Similar Size

Assumptions Approx Ratio

DM03 (1)-(4) PTAS
dBGK05 (1),(2),(3) O(1)( ),( ),( ) ( )
EFS06 (1),(2),(4) O(1)
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Best Previous Result

Mitchell (SODA ’07)( )
PTAS for Euclidean plane, fat and weakly disjoint regions 
(assumptions (1)-(3)) 

Techniques
1 Guillotine subdivision1. Guillotine subdivision
2. Only applies to Euclidean plane, would not work 

even for 3 dimensions.
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Our Contribution
 More general underlying metric space (with bounded 

doubling dimension)

 Combining and generalizing the notion of fatness and 
disjointness

A group of regions {Rj} is α-fat weakly disjoint if there 
exist r > 0 and for each Rj, a point zj s.t.

(1) {z } is an r packing i e any 2 such points are at(1) {zj} is an r-packing, i.e., any 2 such points are at 
least distance r apart.

(2) Each Rj is contained in B(zj, α r).
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Our ResultOur Result
Theorem [QPTAS for TSPN.  C., Elbassioni SODA’10]
For metric space with doubling dimension kFor metric space with doubling dimension k,
∆ groups of α-fat weakly disjoint regions, we have (1+²)-
approx in time exp((∆/²)k O(α)k2 logk n), where n is the 
t t l b f itotal number of regions.

RemarkRemark
We have weakened assumptions (1)-(4).
If we do not bound the number ∆ of groups, the 
problem remains APX hardproblem remains APX-hard.
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T h iTechniques
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General Framework for TSP [Arora, Talwar]

DDi

Di 1

x y

Di-1

1. Randomized Hierarchical decomposition of metric into “clusters”

Level i cluster diameter Di such that Di-1 ≤ Di /4

2. Assign portals to each cluster (some appropriate net)

3. Show existence of a “good” portal respecting tour
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4. Dynamic Program to find best portal-respecting tour.
B = # portals in child clusters  Run-time = 2O(B log B)



Technical HurdleTechnical Hurdle
When a region is divided, which g
part should be visited?

Each part is further subdivided 
recursively, leading to 

ti l b f texponential number of cases to 
be considered.
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Pruning the Searchg
If a set S has diameter δ,

Pr[S first sep at level i] ≤ β δ / DPr[S first sep. at level i] ≤ β δ / Di.

For some small γ > 0, when 
the sub-region gets smaller 
than γ Di, pick any point and 
stop further partitioning thestop further partitioning the 
subregion.

If there are L levels the expected increase inIf there are L levels, the expected increase in 
cost is at most i β δ / Di · γ Di = L β γ δ

Summing over all regions we have Lβγ × Sum of Diameters
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Summing over all regions, we have Lβγ × Sum of Diameters



Structural Lemma
Lemma
If there are ∆ groups of regions, theng p g

Sum of Diameters ≤∆ O(α)k OPT

Pi ki th i t i t lPicking the pruning parameter γ appropriately, we can 
show the pruning procedure increases the cost by at 
most ² OPT.

Theorem [QPTAS for TSPN]
For metric space with doubling dimension kFor metric space with doubling dimension k,
∆ groups of α-fat weakly disjoint regions, we have (1+²)-
approx in time exp((∆/²)k O(α)k2 logk n), where n is the 
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total number of regions.



Open ProblemsOpen Problems

Is there a PTAS for the case when the underlying 
metric is Euclidean (with appropriate assumptions 
on the regions)? g )

Note that a PTAS is not known for TSP on doubling g
metrics.
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