Approximate Path Problems in Anisotropic Regions

Siu-Wing Cheng
Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong

Joint work with J. Jin, H. Na, A. Vigneron, and Y. Wang

Paths in a Heterogenous Environment

Paths in a Current

$$
\begin{aligned}
\text { speed } & =\sqrt{1+c^{2}-2 c \cos \alpha} \\
& =\sqrt{1+c^{2}+2 c \cos (\beta+\theta)} \\
& =\sqrt{1+c^{2}+2 c \cos (\arcsin (c \sin \theta)+\theta)}
\end{aligned}
$$

Paths in a Current

Paths on a Terrain

$$
\begin{aligned}
\ell & =\text { distance traveled } \\
\mu & =\text { friction coefficient } \\
\text { Energy } & =\ell(\mu \cos \phi+\sin \varphi) \\
& =\ell(\mu \cos \phi+\sin \theta \sin \phi)
\end{aligned}
$$

Paths in a Current

Unit halfdisk: $\phi=\pi / 6, \mu=0.2$.

Convex Distance Function

Non-negative, triangle inequality, possibly assymetric.

Convex Distance Function

Non-negative, triangle inequality, possibly assymetric.
Assume that B is sandwiched between concentric disks of radii 1 and $1 / \rho$.

Input

- A planar subdivision \mathcal{T} possibly with some regions as obstacles.
- Assume triangular faces. Each face f is associated with a distance function d_{f} induced by a convex shape B_{f}.
- Given a path P in \mathcal{T}, we have

$$
\text { length }(P) \leq \operatorname{cost}(P) \leq \rho \operatorname{length}(P)
$$

Previous Work

Weighted Region:

- Aleksandrov et al. [STOC00, JACM05]: dependent on the minimum angle in \mathcal{T}.
- Sun and Reif [Trans. Rob.05, Algo.06]: dependent on the minimum angle in \mathcal{T}.
- Mitchell and Papdimitriou [JACM91]
$O\left(n^{8} L\right)$ time: n is the number of vertices in \mathcal{T}, L is the number of bits in the input, which includes a term $\log (1 / \epsilon)$.

Our results

- Approx. shortest path in $O\left(\frac{\rho^{2} \log \rho}{\epsilon^{2}} n^{3} \log \frac{\rho n}{\epsilon}\right)$ time. [SICOMP08]
- Querying approx. shortest path [SICOMP10]:
- query time $=O\left(\log \frac{\rho n}{\epsilon}\right)$.
- space $=O\left(\frac{\rho^{2} n^{4}}{\epsilon^{2}} \log \frac{\rho n}{\epsilon}\right)$.
- Approx. shortest homotopic path in $O\left(\frac{\rho^{5} h^{5}}{\epsilon} k^{2} n^{3} \log ^{4} \frac{\rho k n}{\epsilon}\right)$ time.

Infiniteness of the Optimal

Infiniteness of the Optimal

Existence of the shortest path can be proved using length spaces.

Theme of Previous Work

- Cost of link within the face $\geq w_{\min } \ell \sin \theta$.

- Cost of link within the face $\geq w_{\min } \ell \sin \theta$.
- Cost of one snap $\leq w_{\min } \epsilon \ell \sin \theta$.

- Cost of link within the face $\geq w_{\min } \ell \sin \theta$.
- Cost of one snap $\leq w_{\min } \epsilon \ell \sin \theta$.
- Each snapping gives a relative error ϵ.

- Cost of link within the face $\geq w_{\min } \ell \sin \theta$.
- Cost of one snap $\leq w_{\min } \epsilon \ell \sin \theta$.
- Each snapping gives a relative error ϵ.
- Overall relative error ϵ.

An Easy Lemma

Fix source v_{s} and destination v_{d}. Let n be the number of vertices in \mathcal{T}.
Focus on paths at most $k \geq 2 n-4$ links. Define path P_{k}^{ϵ} with at most k links such that $\operatorname{cost}\left(P_{k}^{\epsilon}\right) \leq\left(1+\frac{\epsilon}{3}\right) \cdot$ min cost of paths with at most k links.

Lemma

$\operatorname{cost}\left(P_{k}^{\epsilon}\right) \leq \frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$.

An Easy Lemma

Fix source v_{s} and destination v_{d}. Let n be the number of vertices in \mathcal{T}.
Focus on paths at most $k \geq 2 n-4$ links. Define path P_{k}^{ϵ} with at most k links such that $\operatorname{cost}\left(P_{k}^{\epsilon}\right) \leq\left(1+\frac{\epsilon}{3}\right) \cdot$ min cost of paths with at most k links.

Lemma

$\operatorname{cost}\left(P_{k}^{\epsilon}\right) \leq \frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$.

Proof. Let Q with a \mathcal{T}-respecting path with length geo $\left(v_{s}, v_{d}\right)$ with the minimum number of nodes. Q has at most $2 n-4$ links. Thus,

$$
\operatorname{cost}\left(P_{k}^{\epsilon}\right) \leq\left(1+\frac{\epsilon}{3}\right) \operatorname{cost}(Q) \leq \frac{4}{3} \operatorname{cost}(Q) \leq \frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)
$$

A Simple Algorithm

(1) Define the ball B_{0} centered at v_{s} with radius $\frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$. So $P_{k}^{\epsilon} \subset B_{0}$.

A Simple Algorithm

(1) Define the ball B_{0} centered at v_{s} with radius $\frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$. So $P_{k}^{\epsilon} \subset B_{0}$.
(2) For each edge e of \mathcal{T}, place a maximal set of Steiner points on $e \cap B_{0}$ with spacing $\frac{\epsilon}{6 \rho k} \operatorname{geo}\left(v_{s}, v_{d}\right)$.

A Simple Algorithm

A Simple Algorithm

(1) Define the ball B_{0} centered at v_{s} with radius $\frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$. So $P_{k}^{\epsilon} \subset B_{0}$.
(2) For each edge e of \mathcal{T}, place a maximal set of Steiner points on $e \cap B_{0}$ with spacing $\frac{\epsilon}{6 \rho k} \operatorname{geo}\left(v_{s}, v_{d}\right)$.
(3) Define a Steiner graph G :

- Make a directed edge (p, q) for any Steiner points or vertices p and q of \mathcal{T} that border the same face.
- Define the weight of (p, q) as $\operatorname{cost}(p q)$.
(9) Find the shortest path in G.

A Simple Algorithm

(1) Define the ball B_{0} centered at v_{s} with radius $\frac{4 \rho}{3} \operatorname{geo}\left(v_{s}, v_{d}\right)$. So $P_{k}^{\epsilon} \subset B_{0}$.
(2) For each edge e of \mathcal{T}, place a maximal set of Steiner points on $e \cap B_{0}$ with spacing $\frac{\epsilon}{6 \rho k} \operatorname{geo}\left(v_{s}, v_{d}\right)$.
(3) Define a Steiner graph G :

- Make a directed edge (p, q) for any Steiner points or vertices p and q of \mathcal{T} that border the same face.
- Define the weight of (p, q) as $\operatorname{cost}(p q)$.
(9) Find the shortest path in G.

Lemma

For any $k \geq 2 n-4$, we can approximate any path with at most k links in $O\left(n k^{2} \rho^{4} / \epsilon^{2}\right)$ time.

Further Improvements

- Use balls B_{i} of radii $\frac{4 \rho}{2^{2} 3} \operatorname{geo}\left(v_{s}, v_{d}\right)$ for $0 \leq i \leq \log \rho$. Let $B_{\log \rho+1}$ be \emptyset.
- For each edge e of \mathcal{T}, discretize $e \cap\left(B_{i} \backslash B_{i+1}\right)$ using spacing $\frac{\epsilon}{2^{i+1} 6 k} \operatorname{geo}\left(v_{s}, v_{d}\right)$.
- Use Sun and Reif's BUSHWHACK algorithm to avoid generating the edges of G.

Lemma

For any $k \geq 2 n-4$, we can approximate any path with at most k links in $O\left(\frac{n k \rho \log \rho}{\epsilon} \log \frac{k \rho}{\epsilon}\right)$ time.

Path Complexity and Main Result

Lemma

For any $\epsilon \in(0,1)$, there is a $(1+\epsilon)$-approx. shortest polygonal path P with at most $21 \rho n^{2} / \epsilon$ links.

Path Complexity and Main Result

Lemma

For any $\epsilon \in(0,1)$, there is a $(1+\epsilon)$-approx. shortest polygonal path P with at most $21 \rho n^{2} / \epsilon$ links.

Theorem

We can find an $(1+\epsilon)$-approx. shortest path in $O\left(\frac{\rho^{2} \log \rho}{\epsilon^{2}} n^{3} \log \frac{\rho n}{\epsilon}\right)$ time.

Approx. Shortest Homotopic Path

Approx. Shortest Homotopic Path

- Originate from VLSI research.
- Some planning system works by optimizing paths sketched by users.
- We need to require the convex distance functions to be symmetric.

Encoding the Homotopy

Encoding the Homotopy

- Pick one vertex of each obstacle as an anchor.
- Compute an anchor tree: some approx. shortest path tree from the highest point in \mathcal{T} to all anchors.

Encoding the Homotopy

- Crossing sequence of the solid path: $\overrightarrow{a_{1}} \overrightarrow{a_{2}} \overrightarrow{a_{3}} \overrightarrow{a_{4}} \overrightarrow{a_{5}} \overleftarrow{a_{5}} \overleftarrow{a_{4}} \overleftarrow{a_{3}} \overrightarrow{a_{3}} \overleftarrow{a_{3}} \overrightarrow{a_{3}} \overrightarrow{a_{4}} \overrightarrow{a_{5}}$.
- It can be reduced to the canonical crossing sequence $\overrightarrow{a_{1}} \overrightarrow{a_{2}} \overrightarrow{a_{3}} \overrightarrow{a_{4}} \overrightarrow{a_{5}}$ of the dashed path.

Encoding the Homotopy

Lemma

Two paths from s to t are homotopic if and only if their canonical crossing sequences are identical.

Encoding the Homotopy

Lemma

For any ancestor-descendent points x and y in the anchor tree, the tree path cost between x and y is at most the shortest path cost between x and y plus $O\left(\epsilon^{2}\right)$.

High Level Strategy

High Level Strategy

(1) Compute the canonical crossing sequence C of the input path.
(2) Take some discretization \mathcal{D} of the overlay of \mathcal{T} and the anchor tree. Treat the anchor tree as an obstacle.
(3) Compute shortest paths in \mathcal{D} from s to all vertices of \mathcal{D}.
(4) Let $\overrightarrow{a_{i}}$ be the first symbol in C. Let γ_{i} be the path in the anchor tree from a_{i} to the root. Copy the costs of reaching the vertices on left of γ_{i} to the right of γ_{i}.
(5) Use the vertices of γ_{i} as multiple weighted sources and find shortest path to all vertices of \mathcal{D} again.
(0) Repeat last two steps until all symbols in C are processed.

High Level Strategy

Lemma

The canonical crossing sequence has $O\left(\rho h^{2} k \log \frac{\rho k n}{\epsilon}\right)$ symbols, where h is the number of obstacles.

High Level Strategy

Lemma

The canonical crossing sequence has $O\left(\rho h^{2} k \log \frac{\rho k n}{\epsilon}\right)$ symbols, where h is the number of obstacles.

Lemma

For any $\epsilon \in(0,1)$, there is a $(1+\epsilon)$-approx. shortest polygonal path with $O\left(\rho n^{2} \log \frac{\rho n}{\epsilon}\right)$ links.

High Level Strategy

Lemma

The canonical crossing sequence has $O\left(\rho h^{2} k \log \frac{\rho k n}{\epsilon}\right)$ symbols, where h is the number of obstacles.

Lemma

For any $\epsilon \in(0,1)$, there is a $(1+\epsilon)$-approx. shortest polygonal path with $O\left(\rho n^{2} \log \frac{\rho n}{\epsilon}\right)$ links.

Theorem

For any $\epsilon \in(0,1)$, we can find a $(1+\epsilon)$-approx. shortest homotopic path in $O\left(\frac{\rho^{5} h^{5}}{\epsilon} k^{2} n^{3} \log ^{4} \frac{\rho k n}{\epsilon}\right)$ time.

- Approx. shortest path in $O\left(\frac{\rho^{2} \log \rho}{\epsilon^{2}} n^{3} \log \frac{\rho n}{\epsilon}\right)$ time. [SICOMP08]
- Querying approx. shortest path [SICOMP10]:
- query time $=O\left(\log \frac{\rho n}{\epsilon}\right)$.
- space $=O\left(\frac{\rho^{2} n^{4}}{\epsilon^{2}} \log \frac{\rho n}{\epsilon}\right)$.
- Approx. shortest homotopic path in $O\left(\frac{\rho^{5} h^{5}}{\epsilon} k^{2} n^{3} \log ^{4} \frac{\rho k n}{\epsilon}\right)$ time.

Future Research

- Reduce the running time of the approx. shortest homotopic path computation.

Future Research

- Reduce the running time of the approx. shortest homotopic path computation.
- Improve the path complexity further.
- Reduce the running time of the approx. shortest homotopic path computation.
- Improve the path complexity further.
- Extend the cost model. For example, allow forbidden travel directions on a terrain.

