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1.1 Notation

• Upper case X,Y, . . . refer to random variables

• Script X ,Y, . . . refer to discrete sets (alphabets)

• |A| is the cardinality of a discrete set A

• |A| is the determinant of the matrix A

• Xn = (X1, X2, . . . , Xn) is an n-sequence/vector of random variables

• Xj
i = (Xi, Xi+1, . . . , Xj), j ≥ i. By convention we take Xj

i to be the trivial random variable if j < i.

• P(A) denotes the probability of an event A

These notes are a modification of the lecture notes by Prof. Abbas El Gamal(Stanford) and Prof. Young-Han Kim(UCSD)
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• Xn ∼ p(xn): Probability mass function (pmf) of the random vector Xn is p(xn)

p(xn, yn): Joint pmf of Xn and Y n

p(yn|xn): Conditional pmf of Y n given Xn

• Lower case x, y, . . . and xn, yn, . . . refer to scalars/vectors

• EX (g(X)), or E (g(X)) in short, denotes the expected value of g(X)

• X → Y → Z form a Markov chain if p(x, y, z) = p(x)p(y|x)p(z|y)
X1 → X2 → X3 → · · · form a Markov chain if p(xi|xi−1) = p(xi|xi−1)

• X ∼ Bern(p) denotes that the binary random variable X is distributed according to the Bernoulli
distribution with parameter p, i.e.,

X =

{

1, with probability p

0, with probability 1− p

Xn ∼ Bern(p) denotes the binary random n-vector with Xi i.i.d. ∼ Bern(p)

• [1 : M ] denotes the set {1, 2, . . . ,M} for an integerM ; more generally [1 : 2nR] denotes {1, 2, . . . , ⌊2nR⌋}
where ⌊2nR⌋ denotes the integral part of the real number 2nR (for channel coding problems, we use ⌈·⌉
instead of ⌊·⌋)

• 0 · log 0 = 0 by convention
(Recall: limx→0 x log x = 0)

1.1.1 Convention of ǫ
n
and δ(ǫ)

• We often use {ǫn} to denote a sequence of nonnegative numbers that approaches zero as n → ∞

• When there are multiple sequences {ǫ1n}, {ǫ2n}, . . . , {ǫkn} → 0, we denote them all by a generic
{ǫn} → 0 with implicit understanding that ǫn = max{ǫ1n, . . . , ǫkn}

• Similarly, δ(ǫ) denotes a generic function of ǫ such that δ(ǫ) → 0 as ǫ → 0
(Example: δ(ǫ) = ǫ log(1

ǫ
))

1.2 Entropy and Mutual Information

1.2.1 Entropy

• Entropy of a discrete random variable X ∼ p(x):

H(X) = −
∑

x∈X
p(x) log p(x) = −EX (log p(X))

◦ H(X) is nonnegative, continuous, and strictly concave function of p(x)

◦ H(X) ≤ log |X |
This (as well as many other information theoretic inequalities) follows by Jensen’s inequality:

If g is a convex function, then

E (g(X)) ≥ g (E(X))

◦ Binary entropy function: For 0 ≤ p ≤ 1

H(p) = −p log p− (1− p) log(1 − p)

H(0) = H(1) = 0
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• Conditional entropy: Let (X,Y ) ∼ p(x, y)

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x) = −EX,Y (log p(Y |X))

◦ H(Y |X) ≤ H(Y ), with equality iff X and Y are independent

• Joint entropy for random variables (X,Y ) ∼ p(x, y):

H(X,Y ) = −E (log p(X,Y ))

= −E (log p(X))− E (log p(Y |X)) = H(X) +H(Y |X)

= −E (log p(Y ))− E (log p(X |Y )) = H(Y ) +H(X |Y )

◦ H(X,Y ) ≤ H(X) +H(Y ), with equality iff X and Y are independent

• Let X be a discrete random variable and g(X) be a function of X . Then

H(g(X)) ≤ H(X)

with equality iff g is one-to-one over the support of X , i.e., {x ∈ X : p(x) > 0}
Proof:

H(X, g(X)) = H(X) +H(g(X)|X) = H(X) + 0 = H(X)

H(X, g(X)) = H(g(X)) +H(X |g(X)) ≥ H(g(X))

with equality iff H(X |g(X)) = 0 or X can be determined from g(X) (why?).

• Fano’s inequality: If (X,Y ) ∼ p(x, y) and Pe = P{X 6= Y }, then

H(X |Y ) ≤ H(Pe) + Pe log(|X | − 1) ≤ 1 + Pe log(|X | − 1)

Proof: Let the random variable E be defined as follows.

E =

{

0 X = Y

1 X 6= Y
.

H(X |Y ) ≤ H(X,E|Y ) = H(E|Y ) +H(X |E, Y )

≤ H(E) + P(E = 1)H(X |E = 1, Y ) (why?)

≤ 1 + Pe log(|X | − 1)

• Chain rule for entropies: Let Xn be a discrete random vector. Then

H(Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|Xn−1, . . . , X1)

=

n
∑

i=1

H(Xi|Xi−1, . . . , X1)

=

n
∑

i=1

H(Xi|X i−1)

1.2.2 Mutual Information

• For discrete random variables (X,Y ) ∼ p(x, y):

I(X ;Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)

= H(X)−H(X |Y ) = H(Y )−H(Y |X)

A nonnegative function of p(x, y), concave in p(x) for fixed p(y|x), and convex in p(y|x) for fixed p(x)
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• Conditional mutual information:

I(X ;Y |Z) = H(X |Z)−H(X |Y, Z) = H(Y |Z)−H(Y |X,Z)

• Note that no general inequality relation exists between I(X ;Y |Z) and I(X ;Y )

Two important special cases:

◦ If Z → X → Y form a Markov chain, then I(X ;Y |Z) ≤ I(X ;Y )

◦ If p(x, y, z) = p(z)p(x)p(y|x, z), then I(X ;Y |Z) ≥ I(X ;Y )

• Chain rule:

I(Xn;Y ) =

n
∑

i=1

I(Xi;Y |X i−1)

• Data processing inequality: If X → Y → Z form a Markov chain, then I(X ;Z) ≤ I(Y ;Z)

Proof: I(X ;Z) ≤ I(X,Y ;Z) = I(Y ;Z).

1.3 Typical Sequences

• For a sequence xn ∈ Xn, we define its empirical distribution π(·|xn) (often called its type) by

π(a|xn) =
|{i : xi = a}|

n
for all a ∈ X

Tn - number of types for xn

Tn ≡ number of ways you can have non-negative integers a1, ..., a|X | so that
∑

i ai = n.

Therefore Tn ≤ (n+ 1)|X |.

• Question: Suppose you have 2nR sequences xn, then prove that there is at least one type that has
2n(R−ǫ) of these sequences (for large n).?

Solution: Let N be the maximum number of sequences of any one type. Then clearly,

NTn ≥ 2nR ⇒ N(n+ 1)|X | ≥ 2nR.

Therefore N ≥ 2n(R− |X| log2(n+1)
n

) ≥ 2n(R−ǫ) (for large n).

• Let X1, X2, . . . be i.i.d. ∼ pX(x). For each a ∈ X with pX(a) > 0

π(a|Xn) → pX(a) in probability

This is a consequence of the (weak) law of large numbers (LLN)

Thus most likely the random empirical distribution π(·|Xn) does not deviate much from the true
distribution pX(·)

Let {ǫn} be any sequence that satisfies: ǫn → 0,
√
nǫn → ∞. (Example set ǫn = logn√

n
.)

• A limit theorem (proof: follows from Chebyshev’s ineq.)

Let X1, X2, . . . be i.i.d. ∼ pX(x). For each a ∈ X with pX(a) > 0

P
(

|π(a|Xn)− pX(a)| > ǫnpX(a)
)

→ 0.
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• The above theorem implies for any fixed ǫ > 0 we have

P
(

|π(a|Xn)− pX(a)| > ǫpX(a)
)

→ 0.

Consider a sequence {ǫn} satisfying ǫn → 0 and
√
nǫn → ∞.

• Typical set: For X ∼ pX(x), define the set T
(n)
ǫ (X) of typical sequences xn as

T (n)
ǫ (X) := {xn : |π(a|xn)− pX(a)| ≤ ǫn · pX(a) for all a ∈ X}

When it is clear from the context, we will use T
(n)
ǫ instead of T

(n)
ǫ (X)

• For each xn ∈ T
(n)
ǫ (and n large enough)

2−n(1+ǫn)H(X) ≤ p(xn) ≤ 2−n(1−ǫn)H(X)

Notation: p(xn)
.
= 2−n(1±ǫn)H(X)

Proof: Note that p(xn) =
∏

a pX(a)nπ(a|x
n).

2−n(1+ǫn)H(X) =
∏

a

pX(a)npX (a)(1+ǫn) ≤
∏

a

pX(a)nπ(a|x
n)

≤
∏

a

pX(a)npX (a)(1−ǫn) = 2−n(1−ǫn)H(X).

• By summing the lower bound over the typical set, we have

∣

∣T (n)
ǫ

∣

∣ ≤ 2n(1+ǫn)H(X)

• If X1, X2, . . . are i.i.d. ∼ p(x), then by the LLN P
{

Xn ∈ T
(n)
ǫ

}

→ 1. Thus from the upper bound,

∣

∣T (n)
ǫ

∣

∣ ≥ (1 − ǫ)2n(1−ǫn)H(X) for n sufficiently large

Xn

T
(n)
ǫ (X)

|T
(n)
ǫ | ≤ 2n(1+ǫn)H(X)

P(T
(n)
ǫ ) ≥ 1− ǫ
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1.4 Jointly Typical Sequences

As before, consider a sequence {ǫn} such that ǫn → 0 and
√
nǫn → ∞.

• Let (X,Y ) ∼ p(x, y). The set T
(n)
ǫ (X,Y ) (or T

(n)
ǫ in short) of jointly typical sequences (xn, yn) is

defined as:

T (n)
ǫ := {(xn, yn) : |π(a, b|xn, yn)− p(a, b)| ≤ ǫn · p(a, b) for all a ∈ X , b ∈ Y}

where

π(a, b|xn, yn) =
|{i : (xi, yi) = (a, b)}|

n

is the empirical distribution of (xn, yn). In other words, T
(n)
ǫ (X,Y ) = T

(n)
ǫ ((X,Y ))

• If (xn, yn) ∈ T
(n)
ǫ (X,Y ), then

1. xn ∈ T
(n)
ǫ (X) and yn ∈ T

(n)
ǫ (Y )

2. p(xn, yn)
.
= 2−n(1±ǫn)H(X,Y )

3. p(xn)
.
= 2−n(1±ǫn)H(X) and p(yn)

.
= 2−n(1±ǫn)H(Y )

4. p(xn|yn) .
= 2−n(1±ǫ)H(X|Y ) and p(yn|xn)

.
= 2−n(1±ǫ)H(Y |X)

Proof:

p(xn|yn) = p(xn,yn)
p(yn) =

∏
(a,b) p(a,b)

nπ(a,b|xn,yn)

∏
(b) p(b)

n(
∑

a π(a,b|xn,yn)) .

Therefore
2−n(1+ǫn)H(X,Y )

2−n(1−ǫn)H(Y )
≤ p(xn|yn) ≤ 2−n(1−ǫn)H(X,Y )

2−n(1+ǫn)H(Y )
.

Thus, we obtain (for n large enough)

2−n(1+ǫ)H(X|Y ) ≤ p(xn|yn) ≤ 2−n(1−ǫ)H(X|Y ).

(n should be large enough so that ǫn(H(X,Y ) +H(Y )) < ǫH(X |Y ) holds.)

• Remark: Check to see that everything is fine even when H(X |Y ) = 0.

• As in the single random variable case,

1. |T (n)
ǫ (X,Y )| ≤ 2n(1+ǫn)H(X,Y )

2. |T (n)
ǫ (X,Y )| ≥ (1− ǫ)2n(1−ǫn)H(X,Y ) for n sufficiently large

• Let T
(n)
ǫ (Y |xn) := {yn : (xn, yn) ∈ T

(n)
ǫ (X,Y )}. Then

|T (n)
ǫ (Y |xn)| ≤ 2n(1+ǫ)H(Y |X) for all xn ∈ T (n)

ǫ (X)

• Let xn ∈ T
(n)
ǫ (X) and let Y n be drawn according to p(yn|xn) =

∏n

i=1 p(yi|xi). Then by the LLN

P{(xn, Y n) ∈ T (n)
ǫ (X,Y )} → 1 as n → ∞

This implies that

|T (n)
ǫ (Y |xn)| ≥ (1− ǫ)2n(1−ǫ)H(Y |X) for all xn ∈ T (n)

ǫ (X)

• Observe that

(1 − ǫ)2n(1−ǫ)H(Y |X) ≤ |T (n)
ǫ (Y |xn)| ≤ 2n(1+ǫ)H(Y |X) for all xn ∈ T (n)

ǫ (X)
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• Given (X,Y ) ∼ p(x, y), let (X̃n, Ỹ n) be drawn i.i.d. ∼ p(x)p(y); in other words, X̃ and Ỹ are from the
product distribution with same marginals as X and Y respectively. Then, for n sufficiently large

1. P{(X̃n, Ỹ n) ∈ T (n)
ǫ (X,Y )} ≤

(

1

1− ǫ

)

2−n(I(X;Y )−δ(ǫ))

2. P{(X̃n, Ỹ n) ∈ T (n)
ǫ (X,Y )} ≥ (1− ǫ)2−n(I(X;Y )+δ(ǫ))

where δ(ǫ) = ǫ(H(X,Y ) +H(X) +H(Y ))

• Intuition: We are determining the probability of picking one of 2nH(X,Y ) jointly typical pairs when we
pick xn uniformly from 2nH(X) typical sequences and yn independently from 2nH(Y ) typical sequences.

• For x̃n ∈ T
(n)
ǫ (X) if Ỹ n is drawn i.i.d. p(y), then for n sufficiently large

1. P{(x̃n, Ỹ n) ∈ T (n)
ǫ (X,Y )} ≤

(

1

1− ǫ

)

2−n(I(X;Y )−δ(ǫ))

2. P{(x̃n, Ỹ n) ∈ T (n)
ǫ (X,Y )} ≥ (1− ǫ)2−n(I(X;Y )+δ(ǫ))

where δ(ǫ) = ǫ(H(X,Y ) +H(X) +H(Y ))

• Intuition: We are determining the probability of picking one of 2nH(Y |X) sequences when we pick
uniformly and randomly from 2nH(Y ) sequences.

1.4.1 Useful Picture

xn

yn

T
(n)
ǫ (Y )

(

| · |
.
= 2nH(Y )

)

T
(n)
ǫ (X)

(

| · |
.
= 2nH(X)

)

T
(n)
ǫ (X,Y )

(

| · |
.
= 2nH(X,Y )

)

T
(n)
ǫ (Y |xn)

(

| · | ≤ 2n(1+ǫ)H(Y |X)
)

T
(n)
ǫ (X|yn)

(

| · | ≤ 2n(1+ǫ)H(X|Y )
)

1.4.2 Another Useful Picture

��
��
��
��

��
��
��
��

T
(n)
ǫ (X)

xn

Xn Yn
T

(n)
ǫ (Y )

T
(n)
ǫ (Y |xn)
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1.5 Channel Coding Theorem

1.5.1 Channel Coding

• Point-to-point communication system model:

M M̂Xn Y n

Message

Encoder Channel Decoder

Estimate

• We assume a discrete memoryless channel (DMC), denoted by (X , p(y|x),Y), consisting of two finite
sets X , Y, and a collection of conditional pmfs p(y|x)

• The n-th extension of the discrete memoryless channel is the channel (Xn, p(yn|xn),Yn), where

p(yi|xi, yi−1) = p(yi|xi), i = 1, 2, . . . , n

• For a channel with no feedback, i.e., p(xi|xi−1, yi−1) = p(xi|xi−1), we have

p(yn|xn) =

n
∏

i=1

p(yi|xi)

Proof:

p(xn)p(yn|xn) = p(xn, yn) =
∏

i

p(xi, yi|xi−1, yi−1)

=
∏

i

p(xi|xi−1, yi−1)p(yi|xi, yi−1) =
∏

i

p(xi|xi−1)p(yi|xi)

= p(xn)
∏

i

p(yi|xi).

• A (2nR, n) code for the channel (X , p(y|x),Y), where R is the rate in bits/transmission, consists of the
following:

1. A message set [2nR] = {1, 2, . . . , ⌈2nR⌉}
2. An encoding function xn : [2nR] → Xn that assigns a codeword xn(m) to each message m ∈ [2nR].

The set {xn(1), . . . , xn(2nR)} is called the codebook

3. A decoding function m̂ : Yn → [2nR] ∪ {e} that assigns either an index m̂ ∈ [2nR] or an error
index e to each received vector yn

• Probability of error: Let λm = P{M̂ 6= m|M = m} be the conditional probability of error given that
message m was sent

The average probability of error P
(n)
e for a (2nR, n) code is defined as

P (n)
e = 2−nR

2nR

∑

m=1

λm

which corresponds to P{M̂ 6= M} when M is uniformly distributed over [2nR].

Important: We assume throughout that the messageM is a uniform random variable. ( The assumption
is quite general: If message is not uniform, then it does not have full entropy and we can compress the
message sequence into another which is almost uniform.)

• A rate R is said to be achievable if there exists a sequence of (2nR, n) codes such that P
(n)
e → 0 as

n → ∞

• The capacity C of a discrete memoryless channel is the supremum of all achievable rates
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1.5.2 Channel Coding Theorem

• Theorem (Shannon [1]): The capacity of the DMC (X , p(y|x),Y) is given by

C = max
p(x)

I(X ;Y )

• Examples:

0 0

11
p

p

0 0

11

e
p

p

◦ Binary symmetric channel (BSC) with crossover probability p: C = 1−H(p)

◦ Binary erasure channel (BEC) with erasure probability p: C = 1− p

• To prove the theorem we need to prove:

◦ Achievability: Any rate R < C is achievable, i.e., there exists a sequence of (2nR, n) codes with

average probability of error P
(n)
e → 0

◦ Weak converse: Given any sequence of (2nR, n) codes with P
(n)
e → 0, R ≤ C

1.5.3 Sketch of Achievability Proof

• Let p(x) be the optimal pmf. Consider a codebook of 2nR randomly chosen ǫ-typical xn codewords

• How many such codewords can be distiguished by the receiver?
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.
.

.
.

T
(n)
ǫ (X)

xn
1

xn
2

Xn Yn T
(n)
ǫ (Y )

◦ There are ≈ 2nH(Y |X) equally likely yn sequences for each xn sequence

◦ The total number of likely yn sequences is ≈ 2nH(Y )

◦ Therefore, the maximum number of distinguishable xn sequences is≈ 2nH(Y )/2nH(Y |X) = 2nI(X,Y ) =
2nC

1.5.4 Proof of Achievability

• Random codebook generation (random coding): Fix p(x). Generate a codebook C consisting of 2nR

i.i.d. xn sequences according to p(xn) =
∏n

i=1 p(xi). Label them xn(m), m ∈ [1 : 2nR]. So

p (C) =
2nR

∏

m=1

n
∏

i=1

p(xi(m))
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• The chosen codebook C is revealed to both sender and receiver before any transmission takes place

• Encoding: To send a message m ∈ [2nR], transmit xn(m)

• Decoding: Let yn be the received sequence

The receiver declares that a message was sent if there exists one and only one index m̂ ∈ [2nR] such

that (xn(m̂), yn) ∈ T
(n)
ǫ ; otherwise an error is declared

• Probability of error: Assuming m is sent, there is a decoding error if (xn(m), yn) /∈ T
(n)
ǫ or if there is

an index m′ 6= m such that (xn(m′), yn) ∈ T
(n)
ǫ

• Consider the probability of error averaged over M and over all codebooks

P(E) =
∑

C
p(C)P (n)

e (C)

=
∑

C
p(C)2−nR

2nR

∑

m=1

λm(C)

= 2−nR

2nR

∑

m=1

∑

C
p(C)λm(C)

=
∑

C
p(C)λ1(C) = P(E|M = 1)

Define the events

Em = {(Xn(m), Y n) ∈ T (n)
ǫ }, m ∈ [2nR]

Hence

P(E|M = 1) = P (Ec
1 ∪ E2 ∪E3 ∪ . . . ∪ E2nR)

≤ P(Ec
1) +

2nR

∑

m=2

P(Em)

Since (Xn(1), Y n) is i.i.d. ∼ p(x, y), P(Ec
1) ≤ ǫ, for n sufficiently large

Since for m 6= 1 Xn(m) is independent of Xn(1), Y n and Xn(m) are independent

Thus, the probability that (Xn(m), Y n) is jointly typical is ≤ 2−n(I(X;Y )−δ(ǫ)), where δ(ǫ) → 0 as
ǫ → 0, and

P(E) ≤ ǫ+
2nR

∑

m=2

2−n(I(X;Y )−δ(ǫ))

= ǫ+
(

2nR − 1
)

2−n(I(X;Y )−δ(ǫ))

≤ ǫ+ 2−n(I(X;Y )−R−δ(ǫ))

≤ 2ǫ,

provided that n is sufficiently large and R < I(X ;Y )− δ(ǫ)

• To complete the proof, note that since the probability of error averaged over the codebooks P(E) ≤ 2ǫ,

there must exist at least one codebook with P
(n)
e ≤ 2ǫ

• Probabilistic method. Simple and elegant

• Shannon’s original arguments. Later made rigorous by Forney and Cover
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• Alternative proofs

◦ Feinstein’s maximal coding theorem

◦ Gallager’s random coding exponent

• Remarks:

◦ The capacity for the maximal probability of error λ∗ = maxm λm is equal to that for the average

probability of error P
(n)
e . This can be shown by throwing away the worst half of the codewords.

In particular, the maximal probability of error for the remaining codewords should be ≤ 2P
(n)
e .

As we shall see, this is not always the case for multiple user channels

◦ It can be shown (e.g., see [2]), that the probability of error decays exponentially in n. Close to
tight bounds exist on the optimal error exponent (called the reliability function)

1.5.5 Proof of Weak Converse

• We need to show that for any sequence of (2nR, n) codes with P
(n)
e → 0, R ≤ C

• Each (2nR, n) code induces the joint pmf

(M,Xn, Y n) ∼ p(m,xn, yn) = 2−nRp(xn|m)

n
∏

i=1

p(yi|xi)

• By Fano’s inequality
H(M |M̂) ≤ 1 + P (n)

e nR =: nǫn,

where ǫn → 0 as n → ∞ by the assumption that P
(n)
e → 0

• From the data processing inequality,

H(M |Y n) ≤ H(M |M̂) ≤ nǫn

• Now consider

nR = H(M)

= I(M ;Y n) +H(M |Y n)

≤ I(Xn;Y n) + nǫn

= H(Y n)−H(Y n|Xn) + nǫn

= H(Y n)−
n
∑

i=1

H(Yi|Xi) + nǫn

≤
n
∑

i=1

H(Yi)−
n
∑

i=1

H(Yi|Xi) + nǫn

=

n
∑

i=1

I(Xi;Yi) + nǫn

≤ nC + nǫn

Dividing by n, we obtain R ≤ C + ǫn

Now letting n → ∞, we have ǫn → 0 and hence R ≤ C
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