Chapter 1

Winter School 2013: Basic Information Theory

Contents

1.1 Notation . 1
1.1.1 Convention of ϵ_{n} and $\delta(\epsilon)$. 2
1.2 Entropy and Mutual Information . 2
1.2.1 Entropy . 2
1.2.2 Mutual Information . 3
1.3 Typical Sequences . 4
1.4 Jointly Typical Sequences . 6
1.4.1 Useful Picture . 7
1.4.2 Another Useful Picture . 7
1.5 Channel Coding Theorem . 8
1.5.1 Channel Coding . 8
1.5.2 Channel Coding Theorem . 9
1.5.3 Sketch of Achievability Proof . 9
1.5.4 Proof of Achievability . 9
1.5.5 Proof of Weak Converse . 11
1.5.6 References . 11

1.1 Notation

- Upper case X, Y, \ldots refer to random variables
- Script $\mathcal{X}, \mathcal{Y}, \ldots$ refer to discrete sets (alphabets)
- $|\mathcal{A}|$ is the cardinality of a discrete set \mathcal{A}
- $|A|$ is the determinant of the matrix A
- $X^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an n-sequence/vector of random variables
- $X_{i}^{j}=\left(X_{i}, X_{i+1}, \ldots, X_{j}\right), j \geq i$. By convention we take X_{i}^{j} to be the trivial random variable if $j<i$.
- $\mathrm{P}(A)$ denotes the probability of an event A

[^0]- $X^{n} \sim p\left(x^{n}\right)$: Probability mass function (pmf) of the random vector X^{n} is $p\left(x^{n}\right)$
$p\left(x^{n}, y^{n}\right)$: Joint pmf of X^{n} and Y^{n}
$p\left(y^{n} \mid x^{n}\right)$: Conditional pmf of Y^{n} given X^{n}
- Lower case x, y, \ldots and x^{n}, y^{n}, \ldots refer to scalars/vectors
- $\mathrm{E}_{X}(g(X))$, or $\mathrm{E}(g(X))$ in short, denotes the expected value of $g(X)$
- $X \rightarrow Y \rightarrow Z$ form a Markov chain if $p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$ $X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots$ form a Markov chain if $p\left(x_{i} \mid x^{i-1}\right)=p\left(x_{i} \mid x_{i-1}\right)$
- $X \sim \operatorname{Bern}(p)$ denotes that the binary random variable X is distributed according to the Bernoulli distribution with parameter p, i.e.,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

$X^{n} \sim \operatorname{Bern}(p)$ denotes the binary random n-vector with X_{i} i.i.d. $\sim \operatorname{Bern}(p)$

- $[1: M]$ denotes the set $\{1,2, \ldots, M\}$ for an integer M; more generally $\left[1: 2^{n R}\right]$ denotes $\left\{1,2, \ldots,\left\lfloor 2^{n R}\right\rfloor\right\}$ where $\left\lfloor 2^{n R}\right\rfloor$ denotes the integral part of the real number $2^{n R}$ (for channel coding problems, we use $\lceil\cdot\rceil$ instead of $\lfloor\cdot\rfloor)$
- $0 \cdot \log 0=0$ by convention
(Recall: $\lim _{x \rightarrow 0} x \log x=0$)

1.1.1 Convention of ϵ_{n} and $\delta(\epsilon)$

- We often use $\left\{\epsilon_{n}\right\}$ to denote a sequence of nonnegative numbers that approaches zero as $n \rightarrow \infty$
- When there are multiple sequences $\left\{\epsilon_{1 n}\right\},\left\{\epsilon_{2 n}\right\}, \ldots,\left\{\epsilon_{k n}\right\} \rightarrow 0$, we denote them all by a generic $\left\{\epsilon_{n}\right\} \rightarrow 0$ with implicit understanding that $\epsilon_{n}=\max \left\{\epsilon_{1 n}, \ldots, \epsilon_{k n}\right\}$
- Similarly, $\delta(\epsilon)$ denotes a generic function of ϵ such that $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$
(Example: $\delta(\epsilon)=\epsilon \log \left(\frac{1}{\epsilon}\right)$)

1.2 Entropy and Mutual Information

1.2.1 Entropy

- Entropy of a discrete random variable $X \sim p(x)$:

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log p(x)=-\mathrm{E}_{X}(\log p(X))
$$

- $H(X)$ is nonnegative, continuous, and strictly concave function of $p(x)$
- $H(X) \leq \log |\mathcal{X}|$

This (as well as many other information theoretic inequalities) follows by Jensen's inequality: If g is a convex function, then

$$
\mathrm{E}(g(X)) \geq g(\mathrm{E}(X))
$$

- Binary entropy function: For $0 \leq p \leq 1$

$$
\begin{aligned}
& H(p)=-p \log p-(1-p) \log (1-p) \\
& H(0)=H(1)=0
\end{aligned}
$$

- Conditional entropy: Let $(X, Y) \sim p(x, y)$

$$
H(Y \mid X)=\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x)=-\mathrm{E}_{X, Y}(\log p(Y \mid X))
$$

- $H(Y \mid X) \leq H(Y)$, with equality iff X and Y are independent
- Joint entropy for random variables $(X, Y) \sim p(x, y)$:

$$
\begin{aligned}
H(X, Y) & =-\mathrm{E}(\log p(X, Y)) \\
& =-\mathrm{E}(\log p(X))-\mathrm{E}(\log p(Y \mid X))=H(X)+H(Y \mid X) \\
& =-\mathrm{E}(\log p(Y))-\mathrm{E}(\log p(X \mid Y))=H(Y)+H(X \mid Y)
\end{aligned}
$$

- $H(X, Y) \leq H(X)+H(Y)$, with equality iff X and Y are independent
- Let X be a discrete random variable and $g(X)$ be a function of X. Then

$$
H(g(X)) \leq H(X)
$$

with equality iff g is one-to-one over the support of X, i.e., $\{x \in \mathcal{X}: p(x)>0\}$
Proof:

$$
\begin{aligned}
& H(X, g(X))=H(X)+H(g(X) \mid X)=H(X)+0=H(X) \\
& H(X, g(X))=H(g(X))+H(X \mid g(X)) \geq H(g(X))
\end{aligned}
$$

with equality iff $H(X \mid g(X))=0$ or X can be determined from $g(X)$ (why?).

- Fano's inequality: If $(X, Y) \sim p(x, y)$ and $P_{e}=\mathrm{P}\{X \neq Y\}$, then

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \log (|\mathcal{X}|-1) \leq 1+P_{e} \log (|\mathcal{X}|-1)
$$

Proof: Let the random variable E be defined as follows.

$$
\begin{gathered}
E= \begin{cases}0 & X=Y \\
1 & X \neq Y\end{cases} \\
H(X \mid Y) \leq H(X, E \mid Y)=H(E \mid Y)+H(X \mid E, Y) \\
\leq H(E)+\mathrm{P}(E=1) H(X \mid E=1, Y)(\text { why? }) \\
\leq 1+P_{e} \log (|\mathcal{X}|-1)
\end{gathered}
$$

- Chain rule for entropies: Let X^{n} be a discrete random vector. Then

$$
\begin{aligned}
H\left(X^{n}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots+H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)
\end{aligned}
$$

1.2.2 Mutual Information

- For discrete random variables $(X, Y) \sim p(x, y)$:

$$
\begin{aligned}
I(X ; Y) & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
\end{aligned}
$$

A nonnegative function of $p(x, y)$, concave in $p(x)$ for fixed $p(y \mid x)$, and convex in $p(y \mid x)$ for fixed $p(x)$

- Conditional mutual information:

$$
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=H(Y \mid Z)-H(Y \mid X, Z)
$$

- Note that no general inequality relation exists between $I(X ; Y \mid Z)$ and $I(X ; Y)$

Two important special cases:

- If $Z \rightarrow X \rightarrow Y$ form a Markov chain, then $I(X ; Y \mid Z) \leq I(X ; Y)$
- If $p(x, y, z)=p(z) p(x) p(y \mid x, z)$, then $I(X ; Y \mid Z) \geq I(X ; Y)$
- Chain rule:

$$
I\left(X^{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X^{i-1}\right)
$$

- Data processing inequality: If $X \rightarrow Y \rightarrow Z$ form a Markov chain, then $I(X ; Z) \leq I(Y ; Z)$

Proof: $I(X ; Z) \leq I(X, Y ; Z)=I(Y ; Z)$.

1.3 Typical Sequences

- For a sequence $x^{n} \in \mathcal{X}^{n}$, we define its empirical distribution $\pi\left(\cdot \mid x^{n}\right)$ (often called its type) by

$$
\pi\left(a \mid x^{n}\right)=\frac{\left|\left\{i: x_{i}=a\right\}\right|}{n} \quad \text { for all } a \in \mathcal{X}
$$

\mathbb{T}_{n} - number of types for x^{n}
$\mathbb{T}_{n} \equiv$ number of ways you can have non-negative integers $a_{1}, \ldots, a_{|\mathcal{X}|}$ so that $\sum_{i} a_{i}=n$.
Therefore $\mathbb{T}_{n} \leq(n+1)^{|\mathcal{X}|}$.

- Question: Suppose you have $2^{n R}$ sequences x^{n}, then prove that there is at least one type that has $2^{n(R-\epsilon)}$ of these sequences (for large n).?
Solution: Let N be the maximum number of sequences of any one type. Then clearly,

$$
N \mathbb{T}_{n} \geq 2^{n R} \Rightarrow N(n+1)^{|\mathcal{X}|} \geq 2^{n R}
$$

Therefore $N \geq 2^{n\left(R-\frac{|\mathcal{X}| \log _{2}(n+1)}{n}\right)} \geq 2^{n(R-\epsilon)}$ (for large $\left.n\right)$.

- Let X_{1}, X_{2}, \ldots be i.i.d. $\sim p_{X}(x)$. For each $a \in \mathcal{X}$ with $p_{X}(a)>0$

$$
\pi\left(a \mid X^{n}\right) \rightarrow p_{X}(a) \quad \text { in probability }
$$

This is a consequence of the (weak) law of large numbers (LLN)
Thus most likely the random empirical distribution $\pi\left(\cdot \mid X^{n}\right)$ does not deviate much from the true distribution $p_{X}(\cdot)$

Let $\left\{\epsilon_{n}\right\}$ be any sequence that satisfies: $\epsilon_{n} \rightarrow 0, \sqrt{n} \epsilon_{n} \rightarrow \infty$. (Example set $\epsilon_{n}=\frac{\log n}{\sqrt{n}}$.)

- A limit theorem (proof: follows from Chebyshev's ineq.)

Let X_{1}, X_{2}, \ldots be i.i.d. $\sim p_{X}(x)$. For each $a \in \mathcal{X}$ with $p_{X}(a)>0$

$$
\mathrm{P}\left(\left|\pi\left(a \mid X^{n}\right)-p_{X}(a)\right|>\epsilon_{n} p_{X}(a)\right) \rightarrow 0
$$

- The above theorem implies for any fixed $\epsilon>0$ we have

$$
\mathrm{P}\left(\left|\pi\left(a \mid X^{n}\right)-p_{X}(a)\right|>\epsilon p_{X}(a)\right) \rightarrow 0
$$

Consider a sequence $\left\{\epsilon_{n}\right\}$ satisfying $\epsilon_{n} \rightarrow 0$ and $\sqrt{n} \epsilon_{n} \rightarrow \infty$.

- Typical set: For $X \sim p_{X}(x)$, define the set $T_{\epsilon}^{(n)}(X)$ of typical sequences x^{n} as

$$
T_{\epsilon}^{(n)}(X):=\left\{x^{n}:\left|\pi\left(a \mid x^{n}\right)-p_{X}(a)\right| \leq \epsilon_{n} \cdot p_{X}(a) \text { for all } a \in \mathcal{X}\right\}
$$

When it is clear from the context, we will use $T_{\epsilon}^{(n)} \operatorname{instead}$ of $T_{\epsilon}^{(n)}(X)$

- For each $x^{n} \in T_{\epsilon}^{(n)}$ (and n large enough)

$$
2^{-n\left(1+\epsilon_{n}\right) H(X)} \leq p\left(x^{n}\right) \leq 2^{-n\left(1-\epsilon_{n}\right) H(X)}
$$

Notation: $p\left(x^{n}\right) \doteq 2^{-n\left(1 \pm \epsilon_{n}\right) H(X)}$
Proof: Note that $p\left(x^{n}\right)=\prod_{a} p_{X}(a)^{n \pi\left(a \mid x^{n}\right)}$.

$$
\begin{aligned}
2^{-n\left(1+\epsilon_{n}\right) H(X)} & =\prod_{a} p_{X}(a)^{n p_{X}(a)\left(1+\epsilon_{n}\right)} \leq \prod_{a} p_{X}(a)^{n \pi\left(a \mid x^{n}\right)} \\
& \leq \prod_{a} p_{X}(a)^{n p_{X}(a)\left(1-\epsilon_{n}\right)}=2^{-n\left(1-\epsilon_{n}\right) H(X)}
\end{aligned}
$$

- By summing the lower bound over the typical set, we have

$$
\left|T_{\epsilon}^{(n)}\right| \leq 2^{n\left(1+\epsilon_{n}\right) H(X)}
$$

- If X_{1}, X_{2}, \ldots are i.i.d. $\sim p(x)$, then by the $\operatorname{LLN~} \mathrm{P}\left\{X^{n} \in T_{\epsilon}^{(n)}\right\} \rightarrow 1$. Thus from the upper bound, $\left|T_{\epsilon}^{(n)}\right| \geq(1-\epsilon) 2^{n\left(1-\epsilon_{n}\right) H(X)}$ for n sufficiently large

1.4 Jointly Typical Sequences

As before, consider a sequence $\left\{\epsilon_{n}\right\}$ such that $\epsilon_{n} \rightarrow 0$ and $\sqrt{n} \epsilon_{n} \rightarrow \infty$.

- Let $(X, Y) \sim p(x, y)$. The set $T_{\epsilon}^{(n)}(X, Y)$ (or $T_{\epsilon}^{(n)}$ in short) of jointly typical sequences $\left(x^{n}, y^{n}\right)$ is defined as:

$$
T_{\epsilon}^{(n)}:=\left\{\left(x^{n}, y^{n}\right):\left|\pi\left(a, b \mid x^{n}, y^{n}\right)-p(a, b)\right| \leq \epsilon_{n} \cdot p(a, b) \text { for all } a \in \mathcal{X}, b \in \mathcal{Y}\right\}
$$

where

$$
\pi\left(a, b \mid x^{n}, y^{n}\right)=\frac{\left|\left\{i:\left(x_{i}, y_{i}\right)=(a, b)\right\}\right|}{n}
$$

is the empirical distribution of $\left(x^{n}, y^{n}\right)$. In other words, $T_{\epsilon}^{(n)}(X, Y)=T_{\epsilon}^{(n)}((X, Y))$

- If $\left(x^{n}, y^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)$, then

1. $x^{n} \in T_{\epsilon}^{(n)}(X)$ and $y^{n} \in T_{\epsilon}^{(n)}(Y)$
2. $p\left(x^{n}, y^{n}\right) \doteq 2^{-n\left(1 \pm \epsilon_{n}\right) H(X, Y)}$
3. $p\left(x^{n}\right) \doteq 2^{-n\left(1 \pm \epsilon_{n}\right) H(X)}$ and $p\left(y^{n}\right) \doteq 2^{-n\left(1 \pm \epsilon_{n}\right) H(Y)}$
4. $p\left(x^{n} \mid y^{n}\right) \doteq 2^{-n(1 \pm \epsilon) H(X \mid Y)}$ and $p\left(y^{n} \mid x^{n}\right) \doteq 2^{-n(1 \pm \epsilon) H(Y \mid X)}$

Proof:
$p\left(x^{n} \mid y^{n}\right)=\frac{p\left(x^{n}, y^{n}\right)}{p\left(y^{n}\right)}=\frac{\prod_{(a, b)} p(a, b)^{n \pi\left(a, b \mid x^{n}, y^{n}\right)}}{\prod_{(b)} p(b)^{n\left(\sum_{a} \pi\left(a, b \mid x^{n}, y^{n}\right)\right)}}$.
Therefore

$$
\frac{2^{-n\left(1+\epsilon_{n}\right) H(X, Y)}}{2^{-n\left(1-\epsilon_{n}\right) H(Y)}} \leq p\left(x^{n} \mid y^{n}\right) \leq \frac{2^{-n\left(1-\epsilon_{n}\right) H(X, Y)}}{2^{-n\left(1+\epsilon_{n}\right) H(Y)}} .
$$

Thus, we obtain (for n large enough)

$$
2^{-n(1+\epsilon) H(X \mid Y)} \leq p\left(x^{n} \mid y^{n}\right) \leq 2^{-n(1-\epsilon) H(X \mid Y)}
$$

(n should be large enough so that $\epsilon_{n}(H(X, Y)+H(Y))<\epsilon H(X \mid Y)$ holds.)

- Remark: Check to see that everything is fine even when $H(X \mid Y)=0$.
- As in the single random variable case,

1. $\left|T_{\epsilon}^{(n)}(X, Y)\right| \leq 2^{n\left(1+\epsilon_{n}\right) H(X, Y)}$
2. $\left|T_{\epsilon}^{(n)}(X, Y)\right| \geq(1-\epsilon) 2^{n\left(1-\epsilon_{n}\right) H(X, Y)}$ for n sufficiently large

- Let $T_{\epsilon}^{(n)}\left(Y \mid x^{n}\right):=\left\{y^{n}:\left(x^{n}, y^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\}$. Then

$$
\left|T_{\epsilon}^{(n)}\left(Y \mid x^{n}\right)\right| \leq 2^{n(1+\epsilon) H(Y \mid X)} \quad \text { for all } x^{n} \in T_{\epsilon}^{(n)}(X)
$$

- Let $x^{n} \in T_{\epsilon}^{(n)}(X)$ and let Y^{n} be drawn according to $p\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)$. Then by the LLN

$$
\mathrm{P}\left\{\left(x^{n}, Y^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

This implies that

$$
\left|T_{\epsilon}^{(n)}\left(Y \mid x^{n}\right)\right| \geq(1-\epsilon) 2^{n(1-\epsilon) H(Y \mid X)} \quad \text { for all } x^{n} \in T_{\epsilon}^{(n)}(X)
$$

- Observe that

$$
(1-\epsilon) 2^{n(1-\epsilon) H(Y \mid X)} \leq\left|T_{\epsilon}^{(n)}\left(Y \mid x^{n}\right)\right| \leq 2^{n(1+\epsilon) H(Y \mid X)} \quad \text { for all } x^{n} \in T_{\epsilon}^{(n)}(X)
$$

- Given $(X, Y) \sim p(x, y)$, let $\left(\tilde{X}^{n}, \tilde{Y}^{n}\right)$ be drawn i.i.d. $\sim p(x) p(y)$; in other words, \tilde{X} and \tilde{Y} are from the product distribution with same marginals as X and Y respectively. Then, for n sufficiently large

1. $\mathrm{P}\left\{\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\} \leq\left(\frac{1}{1-\epsilon}\right) 2^{-n(I(X ; Y)-\delta(\epsilon))}$
2. $\mathrm{P}\left\{\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\} \geq(1-\epsilon) 2^{-n(I(X ; Y)+\delta(\epsilon))}$
where $\delta(\epsilon)=\epsilon(H(X, Y)+H(X)+H(Y))$

- Intuition: We are determining the probability of picking one of $2^{n H(X, Y)}$ jointly typical pairs when we pick x^{n} uniformly from $2^{n H(X)}$ typical sequences and y^{n} independently from $2^{n H(Y)}$ typical sequences.
- For $\tilde{x}^{n} \in T_{\epsilon}^{(n)}(X)$ if \tilde{Y}^{n} is drawn i.i.d. $p(y)$, then for n sufficiently large

1. $\mathrm{P}\left\{\left(\tilde{x}^{n}, \tilde{Y}^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\} \leq\left(\frac{1}{1-\epsilon}\right) 2^{-n(I(X ; Y)-\delta(\epsilon))}$
2. $\mathrm{P}\left\{\left(\tilde{x}^{n}, \tilde{Y}^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)\right\} \geq(1-\epsilon) 2^{-n(I(X ; Y)+\delta(\epsilon))}$
where $\delta(\epsilon)=\epsilon(H(X, Y)+H(X)+H(Y))$

- Intuition: We are determining the probability of picking one of $2^{n H(Y \mid X)}$ sequences when we pick uniformly and randomly from $2^{n H(Y)}$ sequences.

1.4.1 Useful Picture

1.4.2 Another Useful Picture

1.5 Channel Coding Theorem

1.5.1 Channel Coding

- Point-to-point communication system model:

- We assume a discrete memoryless channel (DMC), denoted by $(\mathcal{X}, p(y \mid x), \mathcal{Y})$, consisting of two finite sets \mathcal{X}, \mathcal{Y}, and a collection of conditional pmfs $p(y \mid x)$
- The n-th extension of the discrete memoryless channel is the channel $\left(\mathcal{X}^{n}, p\left(y^{n} \mid x^{n}\right), \mathcal{Y}^{n}\right)$, where

$$
p\left(y_{i} \mid x^{i}, y^{i-1}\right)=p\left(y_{i} \mid x_{i}\right), \quad i=1,2, \ldots, n
$$

- For a channel with no feedback, i.e., $p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)=p\left(x_{i} \mid x^{i-1}\right)$, we have

$$
p\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

Proof:

$$
\begin{aligned}
p\left(x^{n}\right) p\left(y^{n} \mid x^{n}\right) & =p\left(x^{n}, y^{n}\right)=\prod_{i} p\left(x_{i}, y_{i} \mid x^{i-1}, y^{i-1}\right) \\
& =\prod_{i} p\left(x_{i} \mid x^{i-1}, y^{i-1}\right) p\left(y_{i} \mid x^{i}, y^{i-1}\right)=\prod_{i} p\left(x_{i} \mid x^{i-1}\right) p\left(y_{i} \mid x_{i}\right) \\
& =p\left(x^{n}\right) \prod_{i} p\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

- A $\left(2^{n R}, n\right)$ code for the channel $(\mathcal{X}, p(y \mid x), \mathcal{Y})$, where R is the rate in bits/transmission, consists of the following:

1. A message set $\left[2^{n R}\right]=\left\{1,2, \ldots,\left\lceil 2^{n R}\right\rceil\right\}$
2. An encoding function $x^{n}:\left[2^{n R}\right] \rightarrow \mathcal{X}^{n}$ that assigns a codeword $x^{n}(m)$ to each message $m \in\left[2^{n R}\right]$. The set $\left\{x^{n}(1), \ldots, x^{n}\left(2^{n R}\right)\right\}$ is called the codebook
3. A decoding function $\hat{m}: \mathcal{Y}^{n} \rightarrow\left[2^{n R}\right] \cup\{\mathrm{e}\}$ that assigns either an index $\hat{m} \in\left[2^{n R}\right]$ or an error index e to each received vector y^{n}

- Probability of error: Let $\lambda_{m}=\mathrm{P}\{\hat{M} \neq m \mid M=m\}$ be the conditional probability of error given that message m was sent
The average probability of error $P_{e}^{(n)}$ for a $\left(2^{n R}, n\right)$ code is defined as

$$
P_{e}^{(n)}=2^{-n R} \sum_{m=1}^{2^{n R}} \lambda_{m}
$$

which corresponds to $\mathrm{P}\{\hat{M} \neq M\}$ when M is uniformly distributed over $\left[2^{n R}\right]$.
Important: We assume throughout that the message M is a uniform random variable. (The assumption is quite general: If message is not uniform, then it does not have full entropy and we can compress the message sequence into another which is almost uniform.)

- A rate R is said to be achievable if there exists a sequence of $\left(2^{n R}, n\right)$ codes such that $P_{e}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$
- The capacity C of a discrete memoryless channel is the supremum of all achievable rates

1.5.2 Channel Coding Theorem

- Theorem (Shannon [1]): The capacity of the DMC $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ is given by

$$
C=\max _{p(x)} I(X ; Y)
$$

- Examples:

- Binary symmetric channel (BSC) with crossover probability p: $C=1-H(p)$
- Binary erasure channel (BEC) with erasure probability $p: C=1-p$
- To prove the theorem we need to prove:
- Achievability: Any rate $R<C$ is achievable, i.e., there exists a sequence of $\left(2^{n R}, n\right)$ codes with average probability of error $P_{e}^{(n)} \rightarrow 0$
- Weak converse: Given any sequence of $\left(2^{n R}, n\right)$ codes with $P_{e}^{(n)} \rightarrow 0, R \leq C$

1.5.3 Sketch of Achievability Proof

- Let $p(x)$ be the optimal pmf. Consider a codebook of $2^{n R}$ randomly chosen ϵ-typical x^{n} codewords
- How many such codewords can be distiguished by the receiver?

- There are $\approx 2^{n H(Y \mid X)}$ equally likely y^{n} sequences for each x^{n} sequence
- The total number of likely y^{n} sequences is $\approx 2^{n H(Y)}$
- Therefore, the maximum number of distinguishable x^{n} sequences is $\approx 2^{n H(Y)} / 2^{n H(Y \mid X)}=2^{n I(X, Y)}=$ $2^{n C}$

1.5.4 Proof of Achievability

- Random codebook generation (random coding): Fix $p(x)$. Generate a codebook \mathcal{C} consisting of $2^{\text {n } R}$ i.i.d. x^{n} sequences according to $p\left(x^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)$. Label them $x^{n}(m), m \in\left[1: 2^{n R}\right]$. So

$$
p(\mathcal{C})=\prod_{m=1}^{2^{n R}} \prod_{i=1}^{n} p\left(x_{i}(m)\right)
$$

- The chosen codebook \mathcal{C} is revealed to both sender and receiver before any transmission takes place
- Encoding: To send a message $m \in\left[2^{n R}\right]$, transmit $x^{n}(m)$
- Decoding: Let y^{n} be the received sequence

The receiver declares that a message was sent if there exists one and only one index $\hat{m} \in\left[2^{n R}\right]$ such that $\left(x^{n}(\hat{m}), y^{n}\right) \in T_{\epsilon}^{(n)}$; otherwise an error is declared

- Probability of error: Assuming m is sent, there is a decoding error if $\left(x^{n}(m), y^{n}\right) \notin T_{\epsilon}^{(n)}$ or if there is an index $m^{\prime} \neq m$ such that $\left(x^{n}\left(m^{\prime}\right), y^{n}\right) \in T_{\epsilon}^{(n)}$
- Consider the probability of error averaged over M and over all codebooks

$$
\begin{aligned}
\mathrm{P}(\mathcal{E}) & =\sum_{\mathcal{C}} p(\mathcal{C}) P_{e}^{(n)}(\mathcal{C}) \\
& =\sum_{\mathcal{C}} p(\mathcal{C}) 2^{-n R} \sum_{m=1}^{2^{n R}} \lambda_{m}(\mathcal{C}) \\
& =2^{-n R} \sum_{m=1}^{2^{n R}} \sum_{\mathcal{C}} p(\mathcal{C}) \lambda_{m}(\mathcal{C}) \\
& =\sum_{\mathcal{C}} p(\mathcal{C}) \lambda_{1}(\mathcal{C})=\mathrm{P}(\mathcal{E} \mid M=1)
\end{aligned}
$$

Define the events

$$
E_{m}=\left\{\left(X^{n}(m), Y^{n}\right) \in T_{\epsilon}^{(n)}\right\}, \quad m \in\left[2^{n R}\right]
$$

Hence

$$
\begin{aligned}
\mathrm{P}(\mathcal{E} \mid M=1) & =\mathrm{P}\left(E_{1}^{c} \cup E_{2} \cup E_{3} \cup \ldots \cup E_{2^{n R}}\right) \\
& \leq \mathrm{P}\left(E_{1}^{c}\right)+\sum_{m=2}^{2^{n R}} \mathrm{P}\left(E_{m}\right)
\end{aligned}
$$

Since $\left(X^{n}(1), Y^{n}\right)$ is i.i.d. $\sim p(x, y), \mathrm{P}\left(E_{1}^{c}\right) \leq \epsilon$, for n sufficiently large
Since for $m \neq 1 X^{n}(m)$ is independent of $X^{n}(1), Y^{n}$ and $X^{n}(m)$ are independent
Thus, the probability that $\left(X^{n}(m), Y^{n}\right)$ is jointly typical is $\leq 2^{-n(I(X ; Y)-\delta(\epsilon))}$, where $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$, and

$$
\begin{aligned}
\mathrm{P}(\mathcal{E}) & \leq \epsilon+\sum_{m=2}^{2^{n R}} 2^{-n(I(X ; Y)-\delta(\epsilon))} \\
& =\epsilon+\left(2^{n R}-1\right) 2^{-n(I(X ; Y)-\delta(\epsilon))} \\
& \leq \epsilon+2^{-n(I(X ; Y)-R-\delta(\epsilon))} \\
& \leq 2 \epsilon,
\end{aligned}
$$

provided that n is sufficiently large and $R<I(X ; Y)-\delta(\epsilon)$

- To complete the proof, note that since the probability of error averaged over the codebooks $\mathrm{P}(\mathcal{E}) \leq 2 \epsilon$, there must exist at least one codebook with $P_{e}^{(n)} \leq 2 \epsilon$
- Probabilistic method. Simple and elegant
- Shannon's original arguments. Later made rigorous by Forney and Cover
- Alternative proofs
- Feinstein's maximal coding theorem
- Gallager's random coding exponent
- Remarks:
- The capacity for the maximal probability of error $\lambda^{*}=\max _{m} \lambda_{m}$ is equal to that for the average probability of error $P_{e}^{(n)}$. This can be shown by throwing away the worst half of the codewords. In particular, the maximal probability of error for the remaining codewords should be $\leq 2 P_{e}^{(n)}$. As we shall see, this is not always the case for multiple user channels
- It can be shown (e.g., see [2]), that the probability of error decays exponentially in n. Close to tight bounds exist on the optimal error exponent (called the reliability function)

1.5.5 Proof of Weak Converse

- We need to show that for any sequence of $\left(2^{n R}, n\right)$ codes with $P_{e}^{(n)} \rightarrow 0, R \leq C$
- Each $\left(2^{n R}, n\right)$ code induces the joint pmf

$$
\left(M, X^{n}, Y^{n}\right) \sim p\left(m, x^{n}, y^{n}\right)=2^{-n R} p\left(x^{n} \mid m\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

- By Fano's inequality

$$
H(M \mid \hat{M}) \leq 1+P_{e}^{(n)} n R=: n \epsilon_{n}
$$

where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ by the assumption that $P_{e}^{(n)} \rightarrow 0$

- From the data processing inequality,

$$
H\left(M \mid Y^{n}\right) \leq H(M \mid \hat{M}) \leq n \epsilon_{n}
$$

- Now consider

$$
\begin{aligned}
n R & =H(M) \\
& =I\left(M ; Y^{n}\right)+H\left(M \mid Y^{n}\right) \\
& \leq I\left(X^{n} ; Y^{n}\right)+n \epsilon_{n} \\
& =H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)+n \epsilon_{n} \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right)+n \epsilon_{n} \\
& \leq \sum_{i=1}^{n} H\left(Y_{i}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right)+n \epsilon_{n} \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right)+n \epsilon_{n} \\
& \leq n C+n \epsilon_{n}
\end{aligned}
$$

Dividing by n, we obtain $R \leq C+\epsilon_{n}$
Now letting $n \rightarrow \infty$, we have $\epsilon_{n} \rightarrow 0$ and hence $R \leq C$

1.5.6 References

[1] C. E. Shannon, "A mathematical theory of communication," Bell System Tech. J., vol. 27, pp. 379-423, 623-656, 1948.
[2] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.

[^0]: These notes are a modification of the lecture notes by Prof. Abbas El Gamal(Stanford) and Prof. Young-Han Kim(UCSD)

