Please discuss the following problems among the students in your group. Some of the groups will be selected to present sample solutions at the group presentation on Tuesday.

Day two: Information Theory

Problem 1 Let $h(x):=-x \log _{2}(x)-(1-x) \log _{2}(1-x), x \in[0,1]$. A 'binary convolution operation' is defined according to: $p * q=p(1-q)+(1-p) q$, where $p, q \in[0,1]$. Finally let $h^{-1}(y)$ be a mapping from $[0,1] \mapsto\left[0, \frac{1}{2}\right]$ such that $h\left(h^{-1}(y)\right)=y$.
For any fixed $p \in\left[0, \frac{1}{2}\right]$, show that $h\left(p * h^{-1}(x)\right)$ is convex in x.
Remark: This result was shown in 1973 and aids in exact computations of certain capacity regions.
(Hint: Let $g_{p}(x)$ be the second derivative of $h\left(p * h^{-1}(x)\right)$ w.r.t. x. Now treat $g_{p}(x)$ as a function in p and show that this function is concave in p when $p \in\left[0, \frac{1}{2}\right]$. Use this result and the values at the end points of $g_{p}(x)$ to conclude that $g_{p}(x) \geq 0 \forall x \in(0,1)$ thus implying the convexity.)

Problem 2 Given a matrix A of size $2^{n R_{1}} \times 2^{n R_{2}}$ such that the entries satisfy: $a_{i j} \in[0,1]$ and $\sum_{i j} a_{i j} \leq \epsilon 2^{n\left(R_{1}+R_{2}\right)}$. Assume $\epsilon \in\left[0, \frac{1}{2}\right]$ and let $m_{n} \in \mathbb{N}$ be such that $\frac{2^{m_{n}}}{n} \rightarrow \infty$ as $n \rightarrow \infty$. (For example, $\left.m_{n}=\left[\log _{2}\left(n \log _{2} n\right)\right]\right)$. Show that, for n large enough, there exists a partition of rows into $N_{r}=2^{n R_{1}-m_{n}}$ sets $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N_{r}}$ of same size, and a partition of of columns into $N_{c}=2^{n R_{1}-m_{n}}$ sets $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N_{c}}$ of same size so that:

- For every $(k, l) \in\left[1: N_{r}\right] \times\left[1: N_{c}\right]$, there exists $i \in \mathcal{R}_{k}$ and $j \in \mathcal{C}_{l}$ with $a_{i j} \leq 2 \epsilon$.
(Hint: Call an entry "good" if $a_{i j} \leq 2 \epsilon$. Randomly (uniformly across all permutations) permute the rows and columns and then partition the rows and columns contiguously. Call a block bad if there is no "good" entry in the entire block. Show that the expected number of bad blocks goes to zero.)

Remark: The problem above arises when comparing capacity regions under average probability of error and maximal probability of error in multi-user settings.

