

What is channel coding about?	What is Channel Coding about? Using channel codes, we can make data transmission / storage more reliable. The main idea is to add redundancy, i.e., we transmit more than strictly required. This redundancy allows us to correct, up to some limits, errors that happen during transmission / storage.
What is Channel Coding about? Block diagram of a digital data transmission / storage system	What is Channel Coding about? Information theory tells us what the largest possible transmission rates are (bits / channel use) for a given channel under the assumption of using the best possible encoder and decoder. However, information theory gives us "only" the existence of such encoders and decoders. Coding theory is about finding such encoding and decoding schemes. Efficiency and practicality of these schemes is important!

Applications of coding theory

Applications of Coding Theory

1. Wireless communication

Earth to satellite and satellite to earth.
Mobile phone to base station and base station to mobile phone.
2. Wire-based communication

Modems, DSL, fiber-optic communication, etc.
3. Optical recording

CDs, DVDs, BluRay discs, etc.
4. Magnetic recording

Tapes, hard disks, etc.
5. Computer memories

Especially in high-relilability computing systems (banking, etc.)
6. Non-volatile memory

Flash memory, phase-change memory, etc.

Applications of Coding Theory

7. ISBN (International Standard Book Number): ISBN-10 and ISBN-13 Among the few codes designed for encoding and decoding by humans. Can detect a few errors that humans typically make when copying numbers. (More details later.)

$$
\begin{aligned}
& \text { ISBN 0-471-06259-6 } \\
& \text { ISBN 978-O52I-55374-2 }
\end{aligned}
$$

8. QR code (Quick Response code)

QR codes are based on BCH and Reed-Solomon codes.

Applications of Coding Theory

9. Hardware design

Sometimes a wire connection pattern needs to satisfy some constraints.
Problem can be formulated as finding / designing a code with certain properties.
10. Morse code (developed in the 1830s) Not really a channel code. More like a source code or a modulation code.
11. Etc.

Comments on ISBN-10

- First 9 symbols are information symbols ("payload"). Information symbols are elements of $\{0,1,2,3,4,5,6,7,8,9\}$.
- The last symbol is a check symbol. The check symbol is an element of $\{0,1,2,3,4,5,6,7,8,9, \mathrm{X}\}$. (Here, " X " is used to represent 10.)
- Basically, information symbols could also take on the value X; however, this is not used.
- The matrix H is called a parity-check matrix.

Properties of ISBN-10

- Can detect any one-symbol error.
- Can detect any pair of symbol switches.
- Designed for a "human channel" (non-typical in that sense).
- Cannot correct one-symbol errors.

Proof: Omitted.

Modified ISBN-10

Question:

How can we modify H such that we can correct one-symbol errors?

Answer:

A possibility is given by the parity-check matrix

$$
\begin{aligned}
\mathbf{H}^{\prime} & \triangleq\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} & 8^{2} & 9^{2} & 10^{2}
\end{array}\right) \\
& =\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 4 & 9 & 5 & 3 & 3 & 5 & 9 & 4 & 1
\end{array}\right) \quad(\bmod 11) .
\end{aligned}
$$

Modified ISBN-10

Definition of Modified ISBN-10: The vector x is a valid modified ISBN-10 codeword if

$$
\begin{aligned}
& \mathbf{H}^{\prime} \cdot \mathbf{x}^{\top}=\mathbf{0}^{\top} \\
& \text { where }(\bmod 11), \\
& \mathbf{H}^{\prime} \triangleq\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1^{2} & 2^{2} & 3^{2} & 4^{2}
\end{array}, . \begin{array}{c}
\\
\end{array}\right)
\end{aligned}
$$

Properties:

- 8 information symbols
- 2 check symbols
- Can correct one-symbol errors.

Price that we pay for this enhanced coding scheme: reduction of rate from $\frac{9}{10}$ to $\frac{8}{10}$. Here: rate $=\frac{\text { \#information symbols }}{\text { codeword length }}$.

Central Theme of Coding Theory Coding theory is about finding codes with the best eror correction capability for a given length and rate.	"Driving forces" for coding schemes
ISBN-13	"Driving Forces" for Coding Schemes
Definition of ISBN-13: The vector $\mathbf{x}=\left(x_{1}, \ldots, x_{13}\right)$ is a valid ISBN-13 codeword if $\mathbf{H} \cdot \mathbf{x}^{\top}=\mathbf{0}^{\top} \quad(\bmod 10),$ where $\mathbf{H} \triangleq(1,3,1,3,1,3,1,3,1,3,1,3,1) .$ (The matrix \mathbf{H} has size 1×13.)	1. New channels e.g., flash memories, phase-change memories, etc. 2. More efficient hardware which allows more sophisticated algorithms, etc. 3. New mathematical insights 4. New regulations e.g., new frequencies that become available for public wireless comm., etc. 5. Etc.

An Observation

In order to be able to correct errors,
the elements of \mathbb{C} should be as far apart as possible.

$\mathcal{X}^{n}:$ all dots
\mathbb{C} : dark red dots

Note:

- If \mathcal{X} is discrete then \mathcal{X}^{n} is a discrete space.
- If \mathcal{X} is continuous then \mathcal{X}^{n} is a continuous space.

A Simplified Data Communication Model

Assuming $\mathcal{Y}=\mathcal{X}$, we can draw decision regions in $\mathcal{Y}^{n}=\mathcal{X}^{n}$ for every codeword $\mathrm{x} \in \mathbb{C}$.

\mathcal{X}^{n} : all dots
\mathbb{C} : dark red dots

Decoder:

- If y is in the decision region of codeword x^{\prime} then the decoder produces the estimate $\hat{\mathrm{x}}=\mathrm{x}^{\prime}$.
- If y is in no decision region, then the decoder declares failure.

Note:

If the decision regions are "spheres," packing as many "spheres" as possible in \mathcal{X}^{n} is called the sphere-packing problem.

Sphere-Packing Problem for $\mathcal{X}=\mathbb{R}$

Kepler was the first person to consider the sphere-packing problem for \mathbb{R}^{3}.

- Kepler's conjecture (1611): in three-dimensional Euclidean space, no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements. The density of these arrangements is around 74.04\%.
- Proved by Thomas Hales in 1998/2014.

The First Algebraic Coding Paper

The Bell System Technical Journal		
	Apmil, 1390	

Hamming wrote the first algebraic coding paper:
R. W. Hamming, "Error detecting and error correcting codes," Bell System Technical Journal, vol. 29, pp. 147-160, April 1950.

Connections to other fields

Connections to Other Fields

1. Combinatorics
designs, Hadamard matrices, difference sets, etc.
2. Algebra
3. Geometry
4. Group theory

Golay code has lots of symmetries, the classification of finite simple groups would not have been completed without coding theory, etc.
5. Theoretical computer science
expander graphs, derandomization, probabilistically checkable proofs, etc.
6. Physics
spin glass models, Ising model, etc.

Part 2

Some important concepts from coding theory

Outline of Part 2

- Simplified setup
- Some simple encoders, generator matrix, parity-check matrix
- Channel models
- Error detection and error correction
- Information theory
- Some notation
- Hamming distance and weight

Simple Encoder: Example 1

Let $\mathcal{U}=\mathcal{X}=\mathbb{F}_{2}=\{0,1\}$. (Here, \mathbb{F}_{2} denotes the finite field with two elements.*)
Let $n=3$ and $k=1$.
Define the encoding mapping

$$
E: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n} \quad \text { with } \quad E(\mathbf{u}) \triangleq \begin{cases}(0,0,0) & \text { if } \mathbf{u}=(0) \\ (1,1,1) & \text { if } \mathbf{u}=(1)\end{cases}
$$

In tabular form, the encoding mapping is

\mathbf{u}	\mapsto	\mathbf{x}
(0)	\mapsto	$(0,0,0)$
(1)	\mapsto	$(1,1,1)$

* Sometimes also denoted GF (2) and called the Galois field with two elements.

Simple Encoder: Example 1

In tabular form, the encoding mapping is

$$
\begin{array}{ccc}
\mathbf{u} & \mapsto & \mathbf{x} \\
\hline(0) & \mapsto & (0,0,0) \\
(1) & \mapsto & (1,1,1)
\end{array}
$$

Graphically, the encoding mapping is

Simple Encoder: Example 1

In tabular form, the encoding mapping is

u	\mapsto	x
(0)	\mapsto	$(0,0,0)$
(1)	\mapsto	$(1,1,1)$

Defining the 1×3 matrix

$$
\mathbf{G} \triangleq\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right),
$$

one can verify that the encoding mapping can also be written as follows:

$$
\mathrm{u} \quad \mapsto \quad \mathrm{x} \triangleq \mathrm{u} \cdot \mathrm{G},
$$

i.e.,

$$
\mathbb{C}=\left\{\mathbf{u} \cdot \mathbf{G} \mid \mathbf{u} \in \mathbb{F}_{2}^{1}\right\} .
$$

The matrix G is called a generator matrix for \mathbb{C}.

Simple Encoder: Example 1

In tabular form, the encoding mapping is

$$
\begin{array}{ccc}
u & \mapsto & \mathbf{x} \\
\hline(0) & \mapsto & (0,0,0) \\
(1) & \mapsto & (1,1,1)
\end{array}
$$

Defining the 2×3 matrix

$$
\mathbf{H} \triangleq\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

one can verify that the code \mathbb{C} can also be described as follows:

$$
\mathbb{C}=\left\{\mathrm{x} \in \mathbb{F}_{2}^{3} \mid \mathbf{H} \cdot \mathrm{x}^{\top}=\mathbf{0}^{\top}\right\} .
$$

The matrix H is called a parity-check matrix for \mathbb{C}.

Simple Encoder: Example 2

Let $\mathcal{U}=\mathcal{X}=\mathbb{F}_{2}=\{0,1\}$.
Let $n=3$ and $k=2$.
Define the encoding mapping

$$
E: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n} \text { with } E(\mathbf{u}) \triangleq \begin{cases}(0,0,0) & \text { if } \mathbf{u}=(0,0) \\ (0,1,1) & \text { if } \mathbf{u}=(0,1) \\ (1,0,1) & \text { if } \mathbf{u}=(1,0) \\ (1,1,0) & \text { if } \mathbf{u}=(1,1)\end{cases}
$$

In tabular form, the encoding mapping is

$$
\begin{array}{ccc}
\mathbf{u} & \mapsto & \mathbf{x} \\
\hline(0,0) & \mapsto & (0,0,0) \\
(0,1) & \mapsto & (0,1,1) \\
(1,0) & \mapsto & (1,0,1) \\
(1,1) & \mapsto & (1,1,0)
\end{array}
$$

Simple Encoder: Example 2

In tabular form, the encoding mapping is

\mathbf{u}	\mapsto	\mathbf{x}
$(0,0)$	\mapsto	$(0,0,0)$
$(0,1)$	\mapsto	$(0,1,1)$
$(1,0)$	\mapsto	$(1,0,1)$
$(1,1)$	\mapsto	$(1,1,0)$

Graphically, the encoding mapping is

Simple Encoder: Example 2

In tabular form, the encoding mapping is

\mathbf{u}	\mapsto	\mathbf{x}
$(0,0)$	\mapsto	$(0,0,0)$
$(0,1)$	\mapsto	$(0,1,1)$
$(1,0)$	\mapsto	$(1,0,1)$
$(1,1)$	\mapsto	$(1,1,0)$

Defining the 2×3 matrix

$$
\mathbf{G} \triangleq\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

one can verify that the encoding mapping can also be written as follows:

$$
\mathrm{u} \quad \mapsto \quad \mathrm{x} \triangleq \mathrm{u} \cdot \mathbf{G},
$$

i.e.,

$$
\mathbb{C}=\left\{\mathbf{u} \cdot \mathbf{G} \mid \mathbf{u} \in \mathbb{F}_{2}^{2}\right\}
$$

The matrix G is called a generator matrix for \mathbb{C}.

Simple Encoder: Example 2

In tabular form, the encoding mapping is

\mathbf{u}	\mapsto	\mathbf{x}
$(0,0)$	\mapsto	$(0,0,0)$
$(0,1)$	\mapsto	$(0,1,1)$
$(1,0)$	\mapsto	$(1,0,1)$
$(1,1)$	\mapsto	$(1,1,0)$

Defining the 1×3 matrix

$$
\mathbf{H} \triangleq\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right),
$$

one can verify that the code \mathbb{C} can also be described as follows:

$$
\mathbb{C}=\left\{\mathrm{x} \in \mathbb{F}_{2}^{3} \mid \mathbf{H} \cdot \mathrm{x}^{\top}=\mathbf{0}^{\top}\right\} .
$$

The matrix \mathbf{H} is called a parity-check matrix for \mathbb{C}.

Comments w.r.t. Examples 1 and 2

- The codes in Examples 1 and 2 are called linear codes because the codes form subspaces of \mathbb{F}_{q}^{n}, i.e., any linear combination of codewords is again a codeword.
- The fact that the codes in Examples 1 and 2 are linear codes easily follows from their description via a generator matrix or their description via a parity-check matrix.
- In Examples 1 and 2, the mapping E is a (strict-sense) systematic encoding mapping, i.e.,

$$
\left(x_{1}, \ldots x_{k}\right)=\left(u_{1}, \ldots, u_{k}\right) \quad \text { for all } \mathbf{x}, \mathbf{u} \text { pairs. }
$$

- In Examples 1 and 2, the codewords are as far apart as possible (under Hamming distance) for given code sizes.

Channel models

Channel Models

In these lectures we will consider two main classes of channel models:

- Probabilistic channel models
- Adverserial channel models

Probabilistic Channel Model

A probabilistic channel model is described by the conditional PMF / PDF

$$
P_{\mathbf{Y} \mid \mathrm{X}}(\mathbf{y} \mid \mathrm{x}) .
$$

In these lectures, we will often assume a memoryless channel (without feedback). With this,

$$
\begin{aligned}
P_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) & =\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid x_{i}\right) \\
& =\prod_{i=1}^{n} W\left(y_{i} \mid x_{i}\right),
\end{aligned}
$$

where we have introduced the channel law $W(y \mid x) \triangleq P_{Y \mid X}(y \mid x)$.

In the following slides, we will discuss some popular channel models.

The Binary Symmetric Channel

Let $\varepsilon \in[0,1]$.

The $\operatorname{BSC}(\varepsilon)$, i.e., the binary symmetric channel with cross-over probability ε, is a discrete memoryless channel with

- input alphabet $\mathcal{X}=\{0,1\}$,
- output alphabet $\mathcal{Y}=\{0,1\}$,
- and conditional PMF

$$
W(y \mid x)= \begin{cases}1-\varepsilon & (y=x) \\ \varepsilon & (y \neq x)\end{cases}
$$

The Binary Erasure Channel

Let $\delta \in[0,1]$.

The $\operatorname{BEC}(\delta)$, the binary erasure channel with erasure probability δ, is a discrete memoryless channel with

- input alphabet $\mathcal{X}=\{0,1\}$,
- output alphabet $\mathcal{Y}=\{0, \Delta, 1\}$,
- and conditional PMF

$$
W(y \mid x)= \begin{cases}1-\delta & (y=x) \\ \delta & (y=\Delta)\end{cases}
$$

Additive White Gaussian Noise Channel

Let $\sigma^{2} \geq 0$.

The AWGNC $\left(\sigma^{2}\right)$, the additive white Gaussian noise channel with noise variance σ^{2}, is a continuous-input continuous-output memoryless channel with

- input alphabet $\mathcal{X}=\mathbb{R}$,
- output alphabet $\mathcal{Y}=\mathbb{R}$,
- and conditional PDF

$$
W(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-x)^{2}}{2 \sigma^{2}}\right) .
$$

The channel output random variable is also given by $Y=X+Z$, where $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and where Z is statistically independent of X.

The Binary-Input

Additive White Gaussian Noise Channel

Let $\sigma^{2} \geq 0$.

The BIAWGNC $\left(\sigma^{2}\right)$, the binary-input additive white Gaussian noise channel with noise variance σ^{2}, is a discrete-input continuous-output memoryless channel with

- input alphabet $\mathcal{X}=\{0,1\}$,
- output alphabet $\mathcal{Y}=\mathbb{R}$,
- and conditional PDF

$$
W(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-\bar{x})^{2}}{2 \sigma^{2}}\right),
$$

where

$$
\bar{x} \triangleq 1-2 x \triangleq\left\{\begin{array}{ll}
+1 & (x=0) \\
-1 & (x=1)
\end{array}\right. \text {. }
$$

The Binary Symmetric Channel (revisited)

Let $\varepsilon \in[0,1]$.

The $\operatorname{BSC}(\varepsilon)$ can also be defined as follows:

$$
Y=X+Z
$$

where

- $P_{Z}(0)=1-\varepsilon$ and $P_{Z}(1)=\epsilon$,
- Z is statistically independent of X,
- X and Z are considered to be elements of \mathbb{F}_{2} and so addition is modulo 2 .

Note:

- For this channel model it makes sense to compare x and y , to subtract x from y , etc.
- In these lectures, we will often use the letter e instead of z.

Adverserial Channel Models

Adverserial channel models are channel models where, for some given channel input vector, an adversary chooses
the "worst possible" channel output vector
among some channel-input-vector-dependent set.

Such channels are popular for cryptographic setups.

Error detection and error correction

Error Detection and Error Correction

In the case of a BSC, we can write

$$
\mathbf{y}=\mathrm{x}+\mathbf{e},
$$

where the vector $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ has components

$$
e_{i}=y_{i}-x_{i}, \quad i=1, \ldots, n .
$$

Note:

- Because $y_{i}, x_{i} \in \mathbb{F}_{2}$, the above additions/subtractions are modulo 2 .
- Because $y_{i}, x_{i} \in \mathbb{F}_{2}$, we can also write $e_{i}=y_{i}-x_{i}$ as $e_{i}=y_{i}+x_{i}$.

Error detection: detect if $\mathbf{e} \neq \mathbf{0}$.
Error correction: we want to know x also if $\mathrm{e} \neq 0$.

Error Detecting Decoder

Consider the following setup:

- $\mathcal{U}=\mathcal{X}=\mathcal{Y}=\mathbb{F}_{2}$.
- $\hat{\mathcal{X}}=\{0,1, \mathrm{err}\}$.
- The channel is a $\operatorname{BSC}(\varepsilon), 0 \leq \varepsilon \leq 1 / 2$.
- $\mathbb{C}=\{(0,0,0),(1,1,1)\}$.

An error detecting decoder is then given by

$$
D_{\mathrm{DET}}(\mathbf{y}) \triangleq \begin{cases}(0,0,0) & \text { if } \mathbf{y}=(0,0,0) \\ (1,1,1) & \text { if } \mathbf{y}=(1,1,1) \\ (\text { err, err, err }) & \text { otherwise }\end{cases}
$$

Note: If $\mathrm{x}=(0,0,0)$ and $\mathbf{e}=(1,1,1)$, then $\mathrm{y}=(1,1,1)$ and $\hat{\mathrm{x}} \triangleq D_{\mathrm{DET}}(\mathbf{y})=(1,1,1)$.
\Rightarrow We do not detect that there were some errors!
\Rightarrow In order to avoid this scenario as far as possible, codewords should be chosen to be "as far apart as possible."

Error Correcting Decoder

Consider the following setup:

- $\mathcal{U}=\mathcal{X}=\mathcal{Y}=\mathbb{F}_{2}$.
- $\hat{\mathcal{X}}=\{0,1, ?\}$.
- The channel is a $\operatorname{BSC}(\varepsilon), 0 \leq \varepsilon \leq 1 / 2$.
- $\mathbb{C}=\{(0,0,0),(1,1,1)\}$.

An error correcting decoder is then given by

$$
D_{\mathrm{DEC}}(\mathbf{y}) \triangleq \begin{cases}(0,0,0) & \text { if } \mathbf{y} \in\{(0,0,0),(0,0,1),(0,1,0),(1,0,0)\} \\ (1,1,1) & \text { if } \mathbf{y} \in\{(1,1,1),(1,1,0),(1,0,1),(0,1,1)\}\end{cases}
$$

Note: The above decoder makes a majority vote, i.e.,

- if there are more $0 \boldsymbol{s}$ than $1 \mathbf{s}$ in y , then $\hat{\mathrm{x}}=(0,0,0)$;
- if there are more $1 \mathbf{s}$ than $0 \boldsymbol{s}$ in y , then $\hat{\mathrm{x}}=(1,1,1)$.

Error Correcting Decoder

Consider the following setup:

- $\mathcal{U}=\mathcal{X}=\mathcal{Y}=\mathbb{F}_{2}$.
- $\hat{\chi}=\{0,1, ?\}$.
- The channel is a $\operatorname{BSC}(\varepsilon), 0 \leq \varepsilon \leq 1 / 2$.
- $\mathbb{C}=\{(0,0,0),(1,1,1)\}$.

An error correcting decoder is then given by

$$
D_{\mathrm{DEC}}(\mathbf{y}) \triangleq \begin{cases}(0,0,0) & \text { if } \mathbf{y} \in\{(0,0,0),(0,0,1),(0,1,0),(1,0,0)\} \\ (1,1,1) & \text { if } \mathbf{y} \in\{(1,1,1),(1,1,0),(1,0,1),(0,1,1)\}\end{cases}
$$

Note: If two of more symbol errors happen, the above decoder will fail.
\Rightarrow In order to avoid this scenario as far as possible, codewords should be chosen to be "as far apart as possible."

Error Correcting Decoder

Consider the following setup:

- $\mathcal{U}=\mathcal{X}=\mathcal{Y}=\mathbb{F}_{2}$.
- $\hat{X}=\{0,1, ?\}$.
- The channel is a $\operatorname{BSC}(\varepsilon), 0 \leq \varepsilon \leq 1 / 2$.
- $\mathbb{C}=\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}$.

Note:

- If $\mathbf{x}=(0,0,0)$ and $\mathbf{e}=(1,0,0)$ then $\mathbf{y}=(1,0,0)$.
- If $\mathbf{x}=(1,0,1)$ and $\mathbf{e}=(0,0,1)$ then $\mathbf{y}=(1,0,0)$.
- If $\mathbf{x}=(1,1,0)$ and $\mathbf{e}=(0,1,0)$ then $\mathbf{y}=(1,0,0)$.
\Rightarrow This code is not strong enough to correct a single symbol error.
\Rightarrow However, it can detect a single symbol error.

What does information theory promise about channel coding?	Information Theory - A channel is characterized by a number C called the capacity. - A code is characterized by a number R called the rate. - If $R<C$: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes). - Shannon's proof was though non-constructive, i.e. it was not clear at all how to obtain specific well-performing finite-length codes that possess efficient encoders and decoders.
Information Theory	
$\rightarrow \stackrel{\mathrm{Ch}}{\mathrm{Ce}}$ \square \square Sink Shannon (1948): it is a good idea to use channel codes!	Some notation

Some Notation

Let \mathcal{S} be a discrete or continuous set. Let $f: \mathcal{S} \rightarrow \mathbb{R}$ be some function.

Notation:

- The maximum value of f will be denoted by

$$
\max _{s \in \mathcal{S}} f(s)
$$

- The set of locations where f takes on the maximum value is

$$
\left\{s \in \mathcal{S} \mid f(s)=\max _{s^{\prime} \in \mathcal{S}} f\left(s^{\prime}\right)\right\}
$$

and will be denoted by

$$
\arg \max _{s \in \mathcal{S}} f(s)
$$

Some Notation

Note:

- The expression $\arg \max _{s \in \mathcal{S}} f(s)$ gives back a set!
- We will often assume that this set contains only one element, say s^{*}, and sloppily write expressions like

$$
s^{*} \triangleq \arg \max _{s \in \mathcal{S}} f(s)
$$

$\arg \max _{s \in \mathcal{S}} f(s)=\left\{s^{*}\right\}$
or $\quad \arg \max _{s \in S} f(s)=s^{*}$

Hamming distance and weight

Hamming Distance and Weight

Let \mathcal{A} be some set and n a positive integer.
Definitions:

- The Hamming distance between two vectors $\mathrm{x}, \mathrm{y} \in \mathcal{A}^{n}$ is defined to be

$$
d(\mathbf{x}, \mathbf{y}) \triangleq d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) \triangleq\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|
$$

- The Hamming weight of a vector $\mathrm{x} \in \mathcal{A}^{n}$ is defined to be

$$
w(\mathrm{x}) \triangleq w_{\mathrm{H}}(\mathrm{x}) \triangleq\left|\left\{i \mid x_{i} \neq 0\right\}\right| .
$$

(Assumption: $0 \in \mathcal{A}$.)

Hamming Distance and Weight

Example 1: Let $\mathcal{A} \triangleq\{0,1\}, \mathbf{x} \triangleq(0,1,1), \mathbf{y} \triangleq(1,0,1)$.
$\Rightarrow \quad d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})=2$.
$\Rightarrow w_{\mathrm{H}}(\mathrm{x})=2$.
$\Rightarrow w_{\mathrm{H}}(\mathbf{y})=2$.

Example 2: Let $\mathcal{A} \triangleq\{0,1,2\}, \mathbf{x} \triangleq(2,1,2,1,0), \mathbf{y} \triangleq(1,2,2,0,0)$.
$\Rightarrow \quad d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})=3$.
$\Rightarrow w_{\mathrm{H}}(\mathrm{x})=4$.
$\Rightarrow w_{\mathrm{H}}(\mathbf{y})=3$.

Outline of Part 3

- Definition of blockwise ML decoding
- Blockwise ML decoding for BSC
- Blockwise ML decoding as solving an integer linear program
- Blockwise ML decoding as solving a linear program

Part 3
Maximum-likelihood (ML) decoding

Definition of blockwise ML decoding

Blockwise ML Decoding

Assumptions:

- The channel is described by $P_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$.
- The code \mathbb{C} is used.

Definition: Blockwise maximum-likelihood (ML) decoding of the received vector y yields the codeword estimate

$$
\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y}) \triangleq \arg \max _{\mathbf{x} \in \mathbb{C}} P_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) .
$$

Note: If all codewords are sent equally likely, then
$\hat{\mathrm{x}}_{\mathrm{ML}}$ minimizes the block error probability,
i.e.,

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \text { minimizes } \operatorname{Pr}\left(\hat{\mathrm{x}}_{\mathrm{ML}}(\mathbf{Y}) \neq \mathbf{X}\right) .
$$

Proof: Omitted.

Blockwise ML Decoding

Note: Besides blockwise ML decoding, there are also

- symbolwise ML decoding,
- blockwise MAP decoding,
- symbolwise MAP decoding.

They all have their uses and are optimal in some suitable sense, but we will not talk more about them in these lectures.

(MAP: maximum a-posteriori)

Blockwise ML Decoding for BSC

Definition (reminder): Blockwise maximum-likelihood (ML) decoding of the received vector y yields the codeword estimate

$$
\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y}) \triangleq \arg \max _{\mathbf{x} \in \mathbb{C}} P_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})
$$

Theorem: Assume that the channel is a $\operatorname{BSC}(\varepsilon)$, with $0 \leq \varepsilon<1 / 2$. Then

$$
\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y})=\arg \min _{\mathbf{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathbf{x}, \mathbf{y})
$$

Note: Interestingly enough, the right-hand side of the above expression is independent of ε as long as $0 \leq \varepsilon<1 / 2$.

Blockwise ML Decoding for BSC

Proof: $\quad \hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y}) \triangleq \arg \max _{\mathbf{x} \in \mathbb{C}} P_{\mathbf{Y} \mid \mathrm{X}}(\mathbf{y} \mid \mathrm{x})$
$=\arg \max _{\mathbf{x} \in \mathbb{C}} \prod_{i=1}^{n} W\left(y_{i} \mid x_{i}\right)$
(a) $\arg \max _{\mathbf{x} \in \mathbb{C}} \log \left(\prod_{i=1}^{n} W\left(y_{i} \mid x_{i}\right)\right)$
$=\arg \max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \log \left(W\left(y_{i} \mid x_{i}\right)\right)$
$\stackrel{\text { (b) }}{=} \arg \max _{\mathbf{x} \in \mathbb{C}}\left(n-d_{\mathrm{H}}(\mathbf{x}, \mathbf{y})\right) \cdot \log (1-\varepsilon)+d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) \cdot \log (\varepsilon)$
$=\arg \max _{\mathbf{x} \in \mathbb{C}} n \cdot \log (1-\varepsilon)-d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) \cdot \log \left(\frac{1-\varepsilon}{\varepsilon}\right)$
$=\arg \max _{\mathbf{x} \in \mathbb{C}}-d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) \cdot \log \left(\frac{1-\varepsilon}{\varepsilon}\right)$
$\stackrel{(c)}{=} \arg \min _{\mathbf{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathbf{x}, \mathbf{y})$.

Blockwise ML Decoding for BSC

Proof (continued):

- Step (a) follows from the fact that $\log (\cdot)$ is a strictly increasing function.
- Step (b) follows from

$$
\log \left(W\left(y_{i} \mid x_{i}\right)\right)= \begin{cases}\log (1-\varepsilon) & \text { if } y_{i}=x_{i} \\ \log (\varepsilon) & \text { if } y_{i} \neq x_{i}\end{cases}
$$

- Step (c) follows from

$$
\frac{1-\varepsilon}{\varepsilon}>1
$$

which implies

$$
\log \left(\frac{1-\varepsilon}{\varepsilon}\right)>0
$$

Blockwise ML Decoding for BSC

Note: Many papers on coding theory start with the

$$
\text { minimum-distance decoding rule } \quad \hat{\mathbf{x}}(\mathbf{y}) \triangleq \arg \min _{\mathbf{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathbf{x}, \mathbf{y})
$$

However, the minimum-distance decoding rule is optimal only for certain setups, like the setup in the above theorem. In general, it is only a decoding heuristic (often a good one) for channels with $\mathcal{Y}=\mathcal{X}$.

The minimum-distance decoding rule can even be "totally useless"! For example, for a $\operatorname{BSC}(\varepsilon)$ with $1 / 2<\varepsilon \leq 1$ one obtains

$$
\begin{aligned}
\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y}) & \triangleq \arg \max _{\mathbf{x} \in \mathbb{C}} P_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) \\
& =\arg \max _{\mathbf{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) .
\end{aligned}
$$

(This is a consequence of $\log \left(\frac{1-\varepsilon}{\varepsilon}\right)<0$.)

Blockwise ML Decoding for BSC

Geometric picture for $\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y}) \triangleq \arg \min _{\mathrm{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})$:

- points in \mathcal{X}^{n}
- codewords, i.e., points in \mathbb{C}
- received vector y

The expression arg $\min _{\mathrm{x} \in \mathbb{C}} d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})$ means the following:

- Compute $d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})$ for every $\mathrm{x} \in \mathbb{C}$.
- Take the $\mathrm{x} \in \mathbb{C}$ for which $d_{\mathrm{H}}(\mathrm{x}, \mathrm{y})$ is minimized.
- If there is a tie, we can either declare failure or randomly pick one of the optimal codewords.

Blockwise ML Decoding for BSC

Example: minimum-distance decoding for

$$
\mathbb{C} \triangleq\{(0,0,0,0,0),(1,1,1,0,0),(0,0,1,1,1),(1,1,0,1,1)\} .
$$

Assume that the transmitted codeword is $\mathbf{x}=(0,0,1,1,1)$.

	Scenario 1	Scenario 2	Scenario 3
	$\mathbf{e}=(0,1,0,0,0)$ $\rightarrow \mathbf{y}=(0,1,1,1,1)$	$\mathbf{e}=(0,1,0,0,1)$ $\rightarrow \mathbf{y}=(0,1,1,1,0)$	$\mathbf{e}=(1,1,0,0,0)$ $\rightarrow \mathbf{y}=(1,1,1,1,1)$
$d_{\mathrm{H}}((0,0,0,0,0), \mathbf{y})$	$=4$	$=3$	$=5$
$d_{\mathrm{H}}((1,1,1,0,0), \mathbf{y})$	$=3$	$=2$	$=2$
$d_{\mathrm{H}}((0,0,1,1,1), \mathbf{y})$	$=1$	$=2$	$=2$
$d_{\mathrm{H}}((1,1,0,1,1), \mathbf{y})$	$=2$	$=3$	$=1$
Comment	$\hat{\mathbf{x}}=\mathbf{x}$	tie!	$\hat{\mathbf{x}} \neq \mathbf{x}$

As we will see later on, this code has $d_{\min }(\mathbb{C})=3$ and so one bit flip will be correctly decoded by a minimum-distance decoder.
Potentially, a minimum-distance decoder can correct more bit flips, but there is no guarantee.

ML decoding as solving a linear program	ML Decoding as an Integer LP Derivation (we assume to have a memoryless channel): $\begin{aligned} & \underset{\mathbf{x} \in \mathbb{C}}{\arg \max _{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})} \\ &=\arg \max _{\mathbf{x} \in \mathbb{C}} \log \prod_{i=1}^{n} P_{Y_{i} \mid X_{i}}\left(y_{i} \mid x_{i}\right) \\ &=\arg \max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \log P_{Y_{i} \mid X_{i}}\left(y_{i} \mid x_{i}\right) \\ &=\arg \max _{\mathrm{x} \in \mathbb{C}} \sum_{i=1}^{n}\left(x_{i} \log \frac{P_{Y_{i} \mid X_{i}}\left(y_{i} \mid 1\right)}{\left.P_{Y_{i} \mid X_{i}}\left\|y_{i}\right\| 0\right)}+\log P_{Y_{i} \mid X_{i}}\left(y_{i} \mid 0\right)\right) \\ &=\arg \max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} x_{i}\left(-\lambda_{i}\right)=\underset{\mathbf{x} \in \mathbb{C}}{\arg \min _{i=1}^{n} \sum_{i=1} x_{i} \lambda_{i} .} \end{aligned}$
ML Decoding as an Integer LP	ML Decoding as an LP
For memoryless channels, blockwise ML decoding of a binary code can be written as an integer linear program.	
$\hat{\mathbf{x}}_{\mathrm{MLL}}^{\text {block }}(\mathbf{y})=\underset{\mathrm{x} \in \mathbb{C}}{\arg \max _{\mathbf{Y} \mid \mathrm{X}}(\mathbf{y} \mid \mathbf{x})=\arg \min _{\mathrm{x} \in \mathbb{C}} \sum_{i=1}^{n} x_{i} \lambda_{i}, ~, ~, ~}$	$\arg \min _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \lambda_{i} x_{i}$
where$\lambda_{i} \triangleq \lambda_{i}\left(y_{i}\right) \triangleq \log \frac{P_{Y \mid X}\left(y_{i} \mid 0\right)}{P_{Y \mid X}\left(y_{i} \mid 1\right)} .$$\stackrel{*}{=} \arg \min _{\mathbf{x} \in \operatorname{conv}(\mathbb{C})} \sum_{i=1}^{n} \lambda_{i} x_{i}$	

Linear Programs (LPs)

Part 4
 Linear-programming decoding

Outline of Part 4

- From blockwise ML decoding to linear-programming decoding
- The fundamental polytope and the fundamental cone
- ML Certificate Property

From blockwise ML decoding to linear-programming decoding	Relaxed Linear Programs $\arg \max _{\omega \in \mathcal{A}} \sum_{i=1}^{n} c_{i} \omega_{i}$
ML Decoding as an LP	Relaxed Linear Programs
$\hat{\mathbf{x}}_{\mathrm{MLL}}^{\mathrm{bock}}(\mathbf{y})=\arg \min _{\mathrm{x} \in \operatorname{conv}(\mathrm{C})} \sum_{i=1}^{n} x_{i} \lambda_{i},$ This is a linear program. However, the number of variables / equalities / inequalities needed to describe the polytope $\operatorname{conv}(\mathbb{C})$ is (usually) exponential in n.	$\arg \max _{\omega \in \mathcal{A}} \sum_{i=1}^{n} c_{i} \omega_{i}$ is replaced by $\arg \max _{\omega \in \mathcal{A}^{\prime}} \sum_{i=1}^{n} c_{i} \omega_{i}$

| Relaxed Linear Programs |
| :--- | :--- |
| $\arg \max _{\omega \in \mathcal{A}} \sum_{i=1}^{n} c_{i} \omega_{i}$ |
| is replaced by |
| $\arg \max _{\omega \in \mathcal{A}^{\prime}} \sum_{i=1}^{n} c_{i} \omega_{i}$ |\quad Relaxed Linear Programs

Linear Programming Decoding

How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for low-density parity-check (LDPC) codes.

Before showing how this relaxation works, let us remember how we define a code using a parity-check matrix.
Let H be a parity-check matrix, e.g.,

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

A vector $\mathrm{x} \in \mathbb{F}_{2}^{5}$ is a codeword if and only if

$$
H x^{\top}=0^{\top} .
$$

Linear Programming Decoding

In our case this means that x is a codeword if and only if x fulfills the following three equations:

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) \Rightarrow \begin{aligned}
& x_{1}+x_{2}+x_{3}=0(\bmod 2) \\
& x_{2}+x_{4}+x_{5}=0(\bmod 2) \\
& x_{3}+x_{4}+x_{5}=0(\bmod 2)
\end{aligned}
$$

Therefore, \mathbb{C} can be seen as the intersection of three codes

$$
\mathbb{C}=\mathbb{C}_{1} \cap \mathbb{C}_{2} \cap \mathbb{C}_{3},
$$

where

$$
\begin{aligned}
& \mathbb{C}_{1} \triangleq\left\{\mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{1} \mathbf{x}^{\top}=0(\bmod 2)\right\} \\
& \mathbb{C}_{2} \triangleq\left\{\mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{2} \mathbf{x}^{\top}=0(\bmod 2)\right\} \\
& \mathbb{C}_{3} \triangleq\left\{\mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{3} \mathbf{x}^{\top}=0(\bmod 2)\right\}
\end{aligned}
$$

Linear Programming Decoding

Let the relaxation relax $(\operatorname{conv}(\mathbb{C}))$ of $\operatorname{conv}(\mathbb{C})$ be the set of all vectors $\omega \in \mathbb{R}^{5}$ that fulfill three conditions:

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) \Rightarrow \begin{aligned}
& \boldsymbol{\omega} \in \operatorname{conv}\left(\mathbb{C}_{1}\right) \\
& \boldsymbol{\omega} \in \operatorname{conv}\left(\mathbb{C}_{2}\right) \\
& \boldsymbol{\omega} \in \operatorname{conv}\left(\mathbb{C}_{3}\right)
\end{aligned}
$$

Therefore,

$$
\mathbb{C} \subset \operatorname{conv}(\mathbb{C}) \subseteq \operatorname{relax}(\operatorname{conv}(\mathbb{C})) \triangleq \underbrace{\operatorname{conv}\left(\mathbb{C}_{1}\right) \cap \operatorname{conv}\left(\mathbb{C}_{2}\right) \cap \operatorname{conv}\left(\mathbb{C}_{3}\right)}_{\text {Fundamental polytope } \mathcal{P}(\mathbf{H})} .
$$

This relaxation turns out to have many desirable properties. Note that the points in $\mathcal{P}(\mathbf{H})$ are called pseudo-codewords.

Blockwise ML Decoding vs. LP Decoding

Blockwise ML decoding:

$$
\hat{\mathbf{x}}_{\mathrm{ML}}^{\text {block }}(\mathbf{y})=\arg \min _{\mathbf{x} \in \operatorname{conv}(\mathbb{C})} \sum_{i=1}^{n} x_{i} \lambda_{i} .
$$

LP decoding:

$$
\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y})=\arg \min _{\omega \in \mathcal{P}(\mathbf{H})} \sum_{i=1}^{n} \omega_{i} \lambda_{i} .
$$

Blockwise ML Decoding vs. LP Decoding

Blockwise ML decoding:

$$
\hat{\mathbf{x}}_{\mathrm{ML}}^{\text {block }}(\mathbf{y})=\arg \min _{\mathbf{x} \in \operatorname{conv}\left(\cap_{j=1}^{m} \mathbb{C}_{j}\right)} \sum_{i=1}^{n} x_{i} \lambda_{i} .
$$

LP decoding:

$$
\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y})=\arg \min _{\omega \in \cap_{j=1}^{m} \operatorname{conv}\left(\mathbb{C}_{j}\right)} \sum_{i=1}^{n} \omega_{i} \lambda_{i}
$$

Fundamental polytope and fundamental code

Fundamental Polytope

$$
\begin{array}{rlrl}
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) & \Rightarrow \mathbb{C}_{1} & & \Rightarrow \operatorname{conv}\left(\mathbb{C}_{1}\right) \\
& \Rightarrow \mathbb{C}_{3} & & \Rightarrow \operatorname{conv}\left(\mathbb{C}_{2}\right) \\
& \Rightarrow \operatorname{conv}\left(\mathbb{C}_{3}\right) \\
& & \mathbb{C}=\bigcap_{j=1}^{m} \mathbb{C}_{j} &
\end{array} \underbrace{\mathcal{P}(\mathbf{H})=\bigcap_{j=1}^{m} \operatorname{conv}\left(\mathbb{C}_{j}\right)}_{\text {Fundamental polytope }} .
$$

$$
\underbrace{}_{0}
$$

Fundamental Polytope / Cone

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) \Rightarrow \operatorname{conv}\left(\mathbb{C}_{1}\right) \quad \Rightarrow \operatorname{conic}\left(\mathbb{C}_{1}\right)
$$

Fundamental Polytope / Cone

Note: because for binary-input output-symmetric channels the analysis of the fundamental polytope essentially boils down to the analysis of the fundamental cone, all the points in the fundamental cone will also be called pseudo-codewords.

Convex Hull of Simple Codes

Let \mathbb{C} be defined by the parity-check matrix

$$
\mathbf{H}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) .
$$

Then

$$
\mathbb{C}=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}
$$

and

$$
\operatorname{conv}(\mathbb{C})=\left\{\begin{array}{l|l}
\boldsymbol{\omega} \in[0,1]^{3} & \begin{array}{l}
-\omega_{1}+\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}-\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}+\omega_{2}-\omega_{3} \geq 0 \\
-\omega_{1}-\omega_{2}-\omega_{3} \geq-2
\end{array}
\end{array}\right\}
$$

Conic Hull of Simple Codes

Let \mathbb{C} be defined by the parity-check matrix

$$
\mathbf{H}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) .
$$

Then

$$
\mathbb{C}=\{(0,0),(1,1)\}
$$

and

$$
\operatorname{conic}(\mathbb{C})=\left\{\begin{array}{l|l}
\boldsymbol{\omega} \in \mathbb{R}_{+}^{2} & \begin{array}{l}
-\omega_{1}+\omega_{2} \geq 0 \\
+\omega_{1}-\omega_{2} \geq 0
\end{array}
\end{array}\right\}
$$

where $\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\}$.

Conic Hull of Simple Codes

Let \mathbb{C} be defined by the parity-check matrix

$$
\mathbf{H}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) .
$$

Then

$$
\mathbb{C}=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}
$$

and

$$
\operatorname{conic}(\mathbb{C})=\left\{\begin{array}{l|l}
\boldsymbol{\omega} \in \mathbb{R}_{+}^{3} & \begin{array}{l}
-\omega_{1}+\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}-\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}+\omega_{2}-\omega_{3} \geq 0
\end{array}
\end{array}\right\}
$$

A Simple Code

Let us consider the length- 3 code \mathbb{C} defined by the parity-check matrix

$$
\mathbf{H}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

The code \mathbb{C} can be written as $\mathbb{C}=\mathbb{C}_{1} \cap \mathbb{C}_{2} \cap \mathbb{C}_{3}$ with

$$
\begin{aligned}
& \mathbb{C}_{1}=\{(0,0,0),(1,1,0),(0,0,1),(1,1,1)\} \\
& \mathbb{C}_{2}=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\} \\
& \mathbb{C}_{3}=\{(0,0,0),(0,1,1),(1,0,0),(1,1,1)\}
\end{aligned}
$$

A Simple Code

The fundamental polytope is $\mathcal{P}(\mathbf{H})=\operatorname{conv}\left(\mathbb{C}_{1}\right) \cap \operatorname{conv}\left(\mathbb{C}_{2}\right) \cap \operatorname{conv}\left(\mathbb{C}_{3}\right)$ with

$$
\begin{aligned}
\operatorname{conv}\left(\mathbb{C}_{1}\right) & =\operatorname{conv}(\{(0,0,0),(1,1,0),(0,0,1),(1,1,1)\}) \\
& =\left\{\boldsymbol{\omega} \in[0,1]^{3} \left\lvert\, \begin{array}{l}
-\omega_{1}+\omega_{2} \geq 0 \\
+\omega_{1}-\omega_{2} \geq 0
\end{array}\right.\right\}
\end{aligned}
$$

$\operatorname{conv}\left(\mathbb{C}_{2}\right)=\operatorname{conv}(\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\})$

$$
=\left\{\boldsymbol{\omega} \in[0,1]^{3} \left\lvert\, \begin{array}{l}
-\omega_{1}+\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}-\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{1}+\omega_{2}-\omega_{3} \geq 0 \\
-\omega_{1}-\omega_{2}-\omega_{3} \geq-2
\end{array}\right.\right\}
$$

$\operatorname{conv}\left(\mathbb{C}_{3}\right)=\operatorname{conv}(\{(0,0,0),(0,1,1),(1,0,0),(1,1,1)\})$

$$
=\left\{\begin{array}{l|l}
\boldsymbol{\omega} \in[0,1]^{3} & \begin{array}{l}
-\omega_{2}+\omega_{3} \geq 0 \\
+\omega_{2}-\omega_{3} \geq 0
\end{array}
\end{array}\right\}
$$

A Simple Code

[^0]ML certificate property

ML Certificate Property

Theorem:

LP decoding has the ML certificate property:
if LP decoding outputs a codeword,
it is guaranteed to be the blockwise ML codeword.

Note: This does not mean that if LP decoding outputs a codeword that LP decoding was successful. The reason for this is that blockwise ML decoding might fail, i.e., output a codeword that is different from the transmitted codeword.

Equivalence of decoders for the BEC

Equivalence of Decoders for the BEC

For the BEC, the following decoders give the same decoding result:

- sum-product algorithm (SPA) decoding,*
- max-product algorithm (MPA) decoding,*
- peeling decoding,*
- linear programming (LP) decoding,
- symbol-wise graph-cover decoding,
- block-wise graph-cover decoding.

Proof: Omitted

* After convergence. For the BEC, one can show that SPA decoding (with flooding schedule), MPA decoding (with flooding schedule), and the peeling decoder converge in a finite number of iterations. (SPA decoding and MPA decoding converge after the same number of iterations, but the the peeling decoder might converge after a different number of iterations.)

References (1/2)

LP decoding was introduced by Feldman, Wainwright, and Karger:

- J. Feldman, Decoding Error-Correcting Codes via Linear Programming, Ph.D. thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 2003.
- J. Feldman, M. J. Wainwright and D. R. Karger, "Using linear programming to decode binary linear codes," IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 954-972, Mar. 2005.
The relaxed polytope introduced by Feldman, Wainwright, and Karger happened to be equivalent to the fundamental polytope introduced in a different context by Koetter and Vontobel, and nowadays the relaxed polytope in LP decoding is typically called the fundamental polytope.
- R. Koetter and P. O. Vontobel, "Graph covers and iterative decoding of finite-length codes," Proc. 3rd Intern. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 75-82, Sep. 1-5, 2003.

References (2/2)

The notion of LP decoding appears also in the context of compressed sensing:

- E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
This notion of LP decoding is rather different than the notion of LP decoding of LDPC codes as discussed in these slides, but there are mathematical connections between the two, as explained in the following paper:
- A. Dimakis, R. Smarandache, and P. O. Vontobel, "LDPC codes for compressed sensing," IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3093-3114, May 2012.
In particular, this paper shows how to construct
"good" compressed sensing measurement matrices
based on
"good" low-density parity-check matrices.

Part 5

Graphical representation of codes

Outline of Part 5

- Graphical representation of codes
- Another example for graphical representation of a code
- Graphical representation of codeword indicator function and pseudo-codeword indicator function

Binary Linear Codes

Let H be a parity-check matrix, e.g.,

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

The code \mathbb{C} described by H is then

$$
\mathbb{C}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}_{2}^{5} \mid \mathbf{H} \cdot \mathbf{x}^{\top}=\mathbf{0}^{\top}(\bmod 2)\right\}
$$

A vector $x \in \mathbb{F}_{2}^{5}$ is a codeword if and only if

$$
\mathbf{H} \cdot \mathbf{x}^{\top}=\mathbf{0}^{\top}(\bmod 2)
$$

Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two equations:

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right) \quad \Rightarrow \quad \begin{aligned}
& x_{1}+x_{2}+x_{3}=0(\bmod 2) \\
& x_{2}+x_{4}+x_{5}=0(\bmod 2)
\end{aligned}
$$

In summary,

$$
\begin{aligned}
& \mathbb{C}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}_{2}^{5} \mid \mathbf{H} \cdot \mathbf{x}^{\top}=0^{\top}(\bmod 2)\right\} \\
& =\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}_{2}^{5} & \begin{array}{l}
x_{1}+x_{2}+x_{3}=0(\bmod 2) \\
x_{2}+x_{4}+x_{5}=0(\bmod 2)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Binary Linear Codes

Defining the codes \mathbb{C}_{1} and \mathbb{C}_{2} where

$$
\begin{aligned}
& \mathbb{C}_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}_{2}^{5} \mid\right. \\
& \left.x_{1}+x_{2}+x_{3}=0(\bmod 2)\right\}, \\
& \mathbb{C}_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}_{2}^{5} \mid\right. \\
& \left.x_{2}+x_{4}+x_{5}=0(\bmod 2)\right\},
\end{aligned}
$$

the code \mathbb{C} can be written as the intersection of \mathbb{C}_{1} and \mathbb{C}_{2} :

$$
\mathbb{C}=\mathbb{C}_{1} \cap \mathbb{C}_{2}
$$

Graphical Representation of a Code

$$
\mathbf{H}=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

$$
\mathbb{C}=\mathbb{C}_{1} \cap \mathbb{C}_{2}
$$

Another example for graphical representation of a code	Graphical representation of codeword indicator function and pseudo-codeword indicator function
Graphical Representation of a Code Consider the binary linear code \mathbb{C} defined by the parity-check matrix $\mathbf{H}=\left(\begin{array}{lllllll} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{array}\right)$	Factor graph $\mathbf{H}=\left(\begin{array}{llllll} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right)$
This code is also defined by the following Tanner graph:	Codeword indicator function: $\begin{aligned} I_{1}\left(x_{1}, x_{2}, x_{5}\right) \cdot & I_{2}\left(x_{2}, x_{3}, x_{4}\right) \cdot I_{3}\left(x_{4}, x_{5}, x_{6}\right) & & \\ = & {\left[\left(x_{1}, x_{2}, x_{5}\right) \in \mathbb{C}_{1}^{\prime}\right] . } & & \text { Notation: } \mathbb{C}_{1}^{\prime} \text { is } \mathbb{C}_{1} \text { punctured at all positions ex- } \\ & {\left[\left(x_{2}, x_{3}, x_{4}\right) \in \mathbb{C}_{2}^{\prime}\right] . } & & \text { cept at positions } 1,2 \text {, and } 5 . \mathbb{C}_{2}^{\prime} \text { and } \mathbb{C}_{3}^{\prime} \text { are simi- } \\ & {\left[\left(x_{4}, x_{5}, x_{6}\right) \in \mathbb{C}_{3}^{\prime}\right] } & & \text { larly defined. } \\ & & & \end{aligned}$

Outline of Part 6

- Definition of graph covers
- Graph-cover (GC) decoding
- Equivalence of GC decoding and LP decoding

Definition of graph covers

Graph Covers

original graph

2-fold cover of original graph

Definition: A double cover of a graph is
Note: the above graph has $2!\cdot 2!\cdot 2!\cdot 2!\cdot 2!=(2!)^{5}$ double covers.

Graph Covers

Besides double covers, a graph has also triple covers, quadruple covers, quintuple covers, etc.

Blockwise Graph-Cover Decoding	Blockwise Graph-Cover Decoding We now define the graph-cover decoder like this: - Receive y. - Compute the LLR vector λ. - Let $\hat{\tilde{\mathbf{x}}}_{\mathrm{GC}}(\mathrm{y})$ be the vector $\tilde{\mathrm{x}}$ of the pair $(\tilde{T}, \tilde{\mathbf{x}})$ that minimizes $\min _{(\tilde{T}, \tilde{\mathbf{x}}): \tilde{T} \text { is a finite cover of } T(\mathbf{H}), \tilde{\mathbf{x}} \in \mathbb{C}(\tilde{T})} \frac{1}{\operatorname{deg}(\tilde{T})}\langle\tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{x}}\rangle .$ Here we used the following notation: - $\tilde{\lambda}$ is the lifting of λ to \tilde{T}. - $\mathbb{C}(\tilde{T})$ is the code defined by the Tanner graph \tilde{T}. - $\operatorname{deg}(\tilde{T})$ is the degree of the cover \tilde{T} over $T(\mathbf{H})$.
Blockwise Graph-Cover Decoding	Equivalence of GC decoding and LP decoding

Blockwise Graph-Cover Decoding

What is the connection to LP decoding?

We start by studying codewords in graph covers of some Tanner graph.

Codewords in Graph Covers

Base Tanner graph of a length-7 code

Possible double cover of the base factor graph

Codewords in Graph Covers

Obviously, any codeword in the base normal factor graph can be lifted to a codeword in the double cover of the base normal graph.

$(1,1,1,0,0,0,0)$
(1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)

Codewords in Graph Covers

But in the double cover of the base normal factor graph there are also codewords that are not liftings of codewords in the base factor graph!

$?$

$(1: 0,1: 0,1: 0,1: 1,1: 0,1: 0,0: 1)$

Let us study the codes defined by the graph covers of this base Tanner/factor graph.

Codewords in Graph Covers

But in the double cover of the base normal factor graph there are also codewords that are not liftings of codewords in the base factor graph!

What about
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) ?$
$(1: 0,1: 0,1: 0,1: 1,1: 0,1: 0,0: 1)$

Codewords in Graph Covers

More formally, the

$$
\text { pseudo-codeword } \omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{R}^{n}
$$

associated with a
valid configuration $\tilde{\mathrm{x}}$ in some M-fold cover $\widetilde{\mathrm{G}}$
is defined to be the vector

$$
\omega \triangleq \varphi_{M}(\widetilde{\mathrm{G}}, \tilde{\mathrm{x}}) \quad \text { with } \quad \omega_{i} \triangleq \frac{1}{M} \sum_{m=1}^{M} \tilde{x}_{i, m}
$$

Codewords in Graph Covers

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix H .
- Let \mathcal{P}^{\prime} be the set of all pseudo-codewords obtained through codewords in finite covers.

Then, \mathcal{P}^{\prime} is dense in \mathcal{P}, i.e.

$$
\begin{aligned}
\mathcal{P}^{\prime} & =\mathcal{P} \cap \mathbb{Q}^{n} \\
\mathcal{P} & =\operatorname{closure}\left(\mathcal{P}^{\prime}\right) .
\end{aligned}
$$

Moreover, note that all vertices of \mathcal{P} are vectors with rational entries and are therefore also in \mathcal{P}^{\prime}.

Blockwise Graph-Cover Decoding

What is the connection to LP decoding?
Let $\omega \triangleq \omega(\tilde{\mathrm{x}}) \in \mathbb{R}^{n}$ be the pseudo-codeword associated with \tilde{x}, i.e.,

$$
\omega_{i}(\tilde{\mathbf{x}})=\frac{1}{\operatorname{deg}(\tilde{T})} \sum_{\ell=1}^{\operatorname{deg}(\tilde{T})} \tilde{x}_{i, \ell}
$$

This helps in reformulating the above cost function:

$$
\frac{1}{\operatorname{deg}(\tilde{T})}\langle\tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{x}}\rangle=\langle\boldsymbol{\lambda}, \boldsymbol{\omega}(\tilde{\mathbf{x}})\rangle
$$

Derivation: $\begin{aligned} \frac{1}{\operatorname{deg}(\tilde{T})}\langle\tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{x}}\rangle & =\frac{1}{\operatorname{deg}(\tilde{T})} \sum_{i=1}^{n} \sum_{\ell=1}^{\operatorname{deg}(\tilde{T})} \tilde{\lambda}_{i, \ell} \tilde{x}_{i, \ell}=\sum_{i=1}^{n} \lambda_{i} \frac{1}{\operatorname{deg}(\tilde{T})} \sum_{\ell=1}^{\operatorname{deg}(\tilde{T})} \tilde{x}_{i, \ell} \\ & =\langle\boldsymbol{\lambda}, \omega(\tilde{\mathbf{x}})\rangle .\end{aligned}$

Fundamental Polytope / Decision Regions

Final Comment

In the same way that GC decoding gives an alternative view of LP decoding, graph-cover interpretations of other relaxed linear programs can be given.

References

[1] R. Koetter and P. . . Vontobel, "Graph covers and iterative decoding of finite-length codes," Proc. 3rd Intern. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 75-82, Sep. 1-5, 2003.
[2] P. O. Vontobel and R. Koetter, "Graph-cover decoding and finite-length analysis of message-passing iterative decoding of LDPC codes," http://www.arxiv.org/abs/cs.IT/0512078, Dec. 2005.
[3] P. O. Vontobel, "Counting in graph covers: a combinatorial characterization of the Bethe entropy function," IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 6018-6048, Sep. 2013.

Note:

- What is called "graph-cover decoding" in [2] is called "blockwise graph-cover decoding" in [3], in order to distinguish it from "symbol-wise graph-cover decoding" that is also introduced in [3].
- A slight technical difference between [2] and [3] is that in [2] the minimum in the definition of (blockwise) graph-cover decoding is over all finite covers, whereas in [3] the minimum in the definition of blockwise graph-cover decoding is over all finite M-covers, whereby $M \rightarrow \infty$.

[^0]: | $\operatorname{conv}\left(\mathbb{C}_{1}\right)$ | $\operatorname{conv}\left(\mathbb{C}_{2}\right)$ |
 | :--- | :--- |
 | $\operatorname{conv}\left(\mathbb{C}_{3}\right)$ | $\mathcal{P}(\mathbf{H})$ |

