
Linear-Programming
Decoding

Pascal O. Vontobel

Department of Information Engineering
The Chinese University of Hong Kong

ITCSC–INCWinter School 2016, CUHK, 26 January 2016

Outline of all Parts

Part 1: Introduction to coding theory

Part 2: Some important concepts from coding theory

Part 3: Maximum-likelihood decoding

Part 4: Linear-programming decoding

Part 5: Graphical representation of codes

Part 6: Graph-cover decoding

Part 1

Introduction to Coding Theory

Outline of Part 1

What is channel coding about?

Applications of coding theory

A simple code example

“Driving forces” for coding schemes

Simplified communication model

Connections to other fields

What is channel coding about?

What is Channel Coding about?

Block diagram of a digital data transmission / storage system

Channel

Channel
Decoder

these lectures

This is what

are about

Encoder

Noisy
Channel

Source
Encoder

Source Modulator

DemodulatorSource
Decoder

Sink

“black box” in these lectures

“black box” in these lectures“black box” in these lectures

What is Channel Coding about?

Using channel codes, we can make data transmission / storage more

reliable.

Themain idea is to add redundancy,

i.e., we transmit more than strictly required.

This redundancy allows us to correct, up to some limits, errors that

happen during transmission / storage.

What is Channel Coding about?

Information theory tells us what the largest possible transmission rates

are (bits / channel use) for a given channel under the assumption of

using the best possible encoder and decoder.

However, information theory gives us “only” the existence of such

encoders and decoders.

Coding theory is about finding such encoding and decoding schemes.

Efficiency and practicality of these schemes is important!

Applications of coding theory

Applications of Coding Theory
1. Wireless communication

Earth to satellite and satellite to earth.

Mobile phone to base station and base station to mobile phone.

2. Wire-based communication

Modems, DSL, fiber-optic communication, etc.

3. Optical recording

CDs, DVDs, BluRay discs, etc.

4. Magnetic recording

Tapes, hard disks, etc.

5. Computer memories

Especially in high-relilability computing systems (banking, etc.)

6. Non-volatile memory

Flash memory, phase-change memory, etc.

Applications of Coding Theory
7. ISBN (International Standard Book Number): ISBN-10 and ISBN-13

Among the few codes designed for encoding and decoding by humans.

Can detect a few errors that humans typically make when copying numbers.

(More details later.)

8. QR code (Quick Response code)

(QR code examples from wikipedia)

QR codes are based on BCH and Reed–Solomon codes.

Applications of Coding Theory

9. Hardware design

Sometimes a wire connection pattern needs to satisfy some constraints.

Problem can be formulated as finding / designing a code with certain

properties.

10. Morse code (developed in the 1830s)

Not really a channel code. More like a source code or amodulation code.

11. Etc.

ISBN (International Standard Book Number)

Comments on ISBNs

There are two ISBN standards:

ISBN-10 (old)

ISBN-13 (new)

ISBN-10

ISBN-10 codeword example:

⇒ x =
(
0, 4, 7, 1, 0, 6, 2, 5, 9, 6

)
.

(The vector x is a row vector of length 10.)

Definition of ISBN-10: The vector x is a valid ISBN-10 codeword if

H · xT = 0T (mod 11),

where

H ,
(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

)
.

(The matrixH has size 1× 10.)

ISBN-10

ISBN-10 codeword example:

x =
(
0, 4, 7, 1, 0, 6, 2, 5, 9, 6

)
.

(The vector x is a row vector of length 10.)

Verification that x is an ISBN-10 codeword:

H · xT =
(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

)
·

(
0, 4, 7, 1, 0, 6, 2, 5, 9, 6

)T

= 1 · 0 + 2 · 4 + 3 · 7 + 4 · 1 + 5 · 0 + 6 · 6 + 7 · 2 + 8 · 5 + 9 · 9 + 10 · 6
= 0 + 8 + 21 + 4 + 0 + 36 + 14 + 40 + 81 + 60

= 0 + 8 + 10 + 4 + 0 + 3 + 3 + 7 + 4 + 5

= 44

= 0 (mod 11).

Comments on ISBN-10

First 9 symbols are information symbols (“payload”).

Information symbols are elements of
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

}
.

The last symbol is a check symbol.

The check symbol is an element of
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X

}
.

(Here, “X” is used to represent 10.)

Basically, information symbols could also take on the valueX;

however, this is not used.

The matrixH is called a parity-check matrix.

Properties of ISBN-10

Can detect any one-symbol error.

Can detect any pair of symbol switches.

Designed for a “human channel” (non-typical in that sense).

Cannot correct one-symbol errors.

Proof: Omitted.

Modified ISBN-10

Question:

How can wemodifyH such that we can correct one-symbol errors?

Answer:

A possibility is given by the parity-check matrix

H′ ,


 1 2 3 4 5 6 7 8 9 10

12 22 32 42 52 62 72 82 92 102




=


 1 2 3 4 5 6 7 8 9 10

1 4 9 5 3 3 5 9 4 1


 (mod 11).

Modified ISBN-10
Definition of Modified ISBN-10: The vector x is a valid modified ISBN-10 codeword if

H′ · xT = 0T (mod 11),

where H′ ,


 1 2 3 4 5 6 7 8 9 10

12 22 32 42 52 62 72 82 92 102


 .

Properties:

8 information symbols

2 check symbols

Can correct one-symbol errors.

Price that we pay for this enhanced coding scheme: reduction of rate from 9
10 to 8

10 .

Here: rate = #information symbols
codeword length .

Central Theme of Coding Theory

Coding theory is about finding codes

with the best eror correction capability

for a given length and rate.

ISBN-13

Definition of ISBN-13:

The vector x = (x1, . . . , x13) is a valid ISBN-13 codeword if

H · xT = 0T (mod 10),

where

H ,
(
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1

)
.

(The matrixH has size 1× 13.)

“Driving forces” for coding schemes

“Driving Forces” for Coding Schemes

1. New channels

e.g., flash memories, phase-change memories, etc.

2. More efficient hardware

which allows more sophisticated algorithms, etc.

3. Newmathematical insights

4. New regulations

e.g., new frequencies that become available for public wireless comm., etc.

5. Etc.

A simplified data communicationmodel

Data Communication Model

Block diagram of a digital data transmission / storage system

Channel

Channel
Decoder

these lectures

This is what

are about

Encoder

Noisy
Channel

Source
Encoder

Source Modulator

DemodulatorSource
Decoder

Sink

“black box” in these lectures

“black box” in these lectures“black box” in these lectures

Simplified Data Communication Model

Block diagram of a digital data transmission / storage system

Channel

Channel
Decoder

x ∈ Xn
codeword

X

Y
y ∈ Yn

received word

Encoder

Sink

Source

Channel

Some Basic Definitions

A codeword x is a vector (usually a row vector) over the alphabet

X and of length n, i.e., x ∈ X n.

The main idea of channel coding is that the set of codewords is

restricted to some subset ofX n.

This subset is called code or codebook.

Here we use the letterC to denote a code. With this: C ⊆ X n.

Important: C has nothing to do with complex numbers!

An Observation

In order to be able to correct errors,

the elements ofC should be as far apart as possible.

X n : all dots

C : dark red dots

Note:

IfX is discrete thenX n is a discrete space.

IfX is continuous thenX n is a continuous space.

A Simplified Data Communication Model
Assuming Y = X , we can draw decision regions in Yn = Xn for every codeword

x ∈ C.

Xn : all dots

C : dark red dots

Decoder:

If y is in the decision region of codeword x′ then the decoder produces the

estimate x̂ = x′.

If y is in no decision region, then the decoder declares failure.

Note:

If the decision regions are “spheres,” packing as many “spheres” as possible inXn is

called the sphere-packing problem.

Sphere-Packing Problem forX = R
Kepler was the first person to consider the sphere-packing problem forR3.

(from wikipedia)

Kepler’s conjecture (1611):

in three-dimensional Euclidean

space, no arrangement of

equally sized spheres filling

space has a greater average

density than that of the cubic

close packing (face-centered

cubic) and hexagonal close

packing arrangements. The

density of these arrangements

is around 74.04%.

Proved by Thomas Hales in

1998 / 2014.

The First Algebraic Coding Paper

Hamming wrote the first algebraic coding paper:

R. W. Hamming, “Error detecting and error cor-

recting codes,” Bell System Technical Journal,

vol. 29, pp. 147–160, April 1950.

Connections to other fields

Connections to Other Fields
1. Combinatorics

designs, Hadamard matrices, difference sets, etc.

2. Algebra

3. Geometry

4. Group theory

Golay code has lots of symmetries, the classification of finite simple groups

would not have been completed without coding theory, etc.

5. Theoretical computer science

expander graphs, derandomization, probabilistically checkable proofs, etc.

6. Physics

spin glass models, Ising model, etc.

Part 2

Some important concepts from coding theory

Outline of Part 2

Simplified setup

Some simple encoders, generator matrix, parity-check matrix

Channel models

Error detection and error correction

Information theory

Some notation

Hamming distance and weight

Simplified setup

Simplified Setup
In these lectures, we will mostly consider the following setup.

Channel
Decoding

Channel
Encoding

SinkSource Channel
y ∈ Yn

U
u ∈ Uk x ∈ Xn

X Y ÛX̂
û ∈ Ûk
x̂ ∈ X̂n

Information word: u = (u1, . . . , uk) ∈ Uk

Codeword (sent word): x = (x1, . . . , xn) ∈ C ⊆ X n

Received word: y = (y1, . . . , yn) ∈ Yn

Codeword estimate: x̂ = (x̂1, . . . , x̂n) ∈ X̂ n

Information word estimate: û = (û1, . . . , ûk) ∈ Ûk

Note:

All the above alphabetsmight be distinct!

Often, X̂ = X and Û = U , but X̂ = X ∪ {?}, etc., are also possible.

Simplified Setup
In these lectures, we will mostly consider the following setup.

Channel
Decoding

Channel
Encoding

SinkSource Channel
y ∈ Yn

U
u ∈ Uk x ∈ Xn

X Y ÛX̂
û ∈ Ûk
x̂ ∈ X̂n

Encoder mapping: E : Uk → Xn

Decoder mapping:∗ D : Yn → X̂n

D : Yn → Ûk

Code (also called codebook): C ,
{
E(u) ∈ Xn

∣∣ u ∈ Uk
}

Code length: n

Code size: |C|

Note: the encoder is usually chosen to be an injectivemapping, i.e., distinct

u’s are mapped to distinct x’s. With that, |C| = |Uk| = |U|k.

∗ Usually clear from the context which one of these two decoder mappings is considered.

Some simple encoders

Simple Encoder: Example 1

Let U = X = F2 = {0, 1}. (Here, F2 denotes the finite field with two elements.∗)

Let n = 3 and k = 1.

Define the encoding mapping

E : Fk
2 → Fn

2 with E(u) ,




(0, 0, 0) if u = (0)

(1, 1, 1) if u = (1)

In tabular form, the encoding mapping is

u 7→ x

(0) 7→ (0, 0, 0)

(1) 7→ (1, 1, 1)

∗ Sometimes also denotedGF(2) and called the Galois field with two elements.

Simple Encoder: Example 1
In tabular form, the encoding mapping is

u 7→ x

(0) 7→ (0, 0, 0)

(1) 7→ (1, 1, 1)

Graphically, the encoding mapping is

x1

u1

x3

0 1

x2

000

001

011

010

100

110

101

111

Simple Encoder: Example 1
In tabular form, the encoding mapping is

u 7→ x

(0) 7→ (0, 0, 0)

(1) 7→ (1, 1, 1)

Defining the 1× 3matrix

G ,
(
1 1 1

)
,

one can verify that the encodingmapping can also be written as follows:

u 7→ x , u ·G,

i.e.,

C =
{
u ·G

∣∣ u ∈ F1
2

}
.

The matrixG is called a generator matrix forC.

Simple Encoder: Example 1
In tabular form, the encoding mapping is

u 7→ x

(0) 7→ (0, 0, 0)

(1) 7→ (1, 1, 1)

Defining the 2× 3matrix

H ,


1 0 1

0 1 1


 ,

one can verify that the codeC can also be described as follows:

C =
{
x ∈ F3

2

∣∣ H · xT = 0T
}
.

The matrixH is called a parity-checkmatrix forC.

Simple Encoder: Example 2
Let U = X = F2 = {0, 1}.
Let n = 3 and k = 2.

Define the encoding mapping

E : Fk
2 → Fn

2 with E(u) ,





(0, 0, 0) if u = (0, 0)

(0, 1, 1) if u = (0, 1)

(1, 0, 1) if u = (1, 0)

(1, 1, 0) if u = (1, 1)

In tabular form, the encoding mapping is

u 7→ x

(0, 0) 7→ (0, 0, 0)

(0, 1) 7→ (0, 1, 1)

(1, 0) 7→ (1, 0, 1)

(1, 1) 7→ (1, 1, 0)

Simple Encoder: Example 2
In tabular form, the encoding mapping is

u 7→ x

(0, 0) 7→ (0, 0, 0)

(0, 1) 7→ (0, 1, 1)

(1, 0) 7→ (1, 0, 1)

(1, 1) 7→ (1, 1, 0)

Graphically, the encoding mapping is

x1

u1

x3

00 10

x2

000

101

010

011

110

100

001

111

u2

1101

Simple Encoder: Example 2
In tabular form, the encoding mapping is

u 7→ x

(0, 0) 7→ (0, 0, 0)

(0, 1) 7→ (0, 1, 1)

(1, 0) 7→ (1, 0, 1)

(1, 1) 7→ (1, 1, 0)

Defining the 2× 3matrix

G ,


1 0 1

0 1 1


 ,

one can verify that the encoding mapping can also be written as follows:

u 7→ x , u ·G,

i.e.,

C =
{
u ·G

∣∣ u ∈ F2
2

}
.

The matrixG is called a generator matrix forC.

Simple Encoder: Example 2
In tabular form, the encoding mapping is

u 7→ x

(0, 0) 7→ (0, 0, 0)

(0, 1) 7→ (0, 1, 1)

(1, 0) 7→ (1, 0, 1)

(1, 1) 7→ (1, 1, 0)

Defining the 1× 3matrix

H ,
(
1 1 1

)
,

one can verify that the codeC can also be described as follows:

C =
{
x ∈ F3

2

∣∣ H · xT = 0T
}
.

The matrixH is called a parity-checkmatrix forC.

Comments w.r.t. Examples 1 and 2

The codes in Examples 1 and 2 are called linear codes because the codes

form subspaces of Fn
q , i.e., any linear combination of codewords is again

a codeword.

The fact that the codes in Examples 1 and 2 are linear codes easily

follows from their description via a generator matrix or their

description via a parity-checkmatrix.

In Examples 1 and 2, the mappingE is a (strict-sense) systematic

encodingmapping, i.e.,

(x1, . . . xk) = (u1, . . . , uk) for all x, u pairs.

In Examples 1 and 2, the codewords are as far apart as possible (under

Hamming distance) for given code sizes.

Channel models

Channel Models

In these lectures we will consider two main classes of channel models:

Probabilistic channel models

Adverserial channel models

Probabilistic Channel Model

A probabilistic channel model is described by the conditional PMF / PDF

PY|X(y|x).

In these lectures, we will often assume amemoryless channel (without feedback).

With this,

PY|X(y|x) =
n∏

i=1

PY |X(yi|xi)

=
n∏

i=1

W (yi|xi),

where we have introduced the channel lawW (y|x) , PY |X(y|x).

In the following slides, we will discuss some popular channel models.

The Binary Symmetric Channel
Let ε ∈ [0, 1].

1− ε
11

0

X
1− ε

ε

0

Y

ε

W (y|x)

TheBSC(ε), i.e., the binary symmetric channel with cross-over probability ε, is a

discrete memoryless channel with

input alphabetX = {0, 1},
output alphabet Y = {0, 1},
and conditional PMF

W (y|x) =




1− ε (y = x)

ε (y 6= x)
.

The Binary Erasure Channel
Let δ ∈ [0, 1].

1− δ
11

δ

0

∆

0
1− δ

δ

X W (y|x) Y

TheBEC(δ), the binary erasure channel with erasure probability δ, is a discrete

memoryless channel with

input alphabetX = {0, 1},
output alphabet Y = {0, ∆, 1},
and conditional PMF

W (y|x) =




1− δ (y = x)

δ (y = ∆)
.

Additive White Gaussian Noise Channel

Let σ2 ≥ 0.

x

z

y

TheAWGNC(σ2), the additive white Gaussian noise channel with noise variance σ2,

is a continuous-input continuous-output memoryless channel with

input alphabetX = R,

output alphabet Y = R,

and conditional PDF

W (y|x) = 1√
2πσ

exp

(
− (y − x)2

2σ2

)
.

The channel output random variable is also given by Y = X + Z, whereZ ∼ N (0, σ2) and whereZ is

statistically independent ofX .

The Binary-Input
Additive White Gaussian Noise Channel
Let σ2 ≥ 0.

x̄0 7→ +1

1 7→ −1
x

z

y

TheBIAWGNC(σ2), the binary-input additive white Gaussian noise channel with

noise variance σ2, is a discrete-input continuous-output memoryless channel with

input alphabetX = {0, 1},
output alphabet Y = R,

and conditional PDF

W (y|x) = 1√
2πσ

exp

(
− (y − x)2

2σ2

)
,

where

x , 1− 2x ,




+1 (x = 0)

−1 (x = 1)
.

The Binary Symmetric Channel (revisited)
Let ε ∈ [0, 1].

x

z

y

TheBSC(ε) can also be defined as follows:

Y = X + Z,

where

PZ(0) = 1− ε and PZ(1) = ǫ,

Z is statistically independent ofX ,

X andZ are considered to be elements of F2 and so addition is modulo 2.

Note:

For this channel model it makes sense to compare x and y, to subtract x from y, etc.

In these lectures, we will often use the letter e instead of z.

Adverserial Channel Models

Adverserial channel models are channel models where, for some given

channel input vector, an adversary chooses

the “worst possible” channel output vector

among some channel-input-vector-dependent set.

Such channels are popular for cryptographic setups.

Error detection and error correction

Error Detection and Error Correction

In the case of a BSC, we can write

y = x+ e,

where the vector e = (e1, . . . , en) has components

ei = yi − xi, i = 1, . . . , n.

Note:

Because yi, xi ∈ F2, the above additions/subtractions aremodulo 2.

Because yi, xi ∈ F2, we can also write ei = yi − xi as ei = yi + xi.

Error detection: detect if e 6= 0.

Error correction: we want to know x also if e 6= 0.

Error Detecting Decoder
Consider the following setup:

U = X = Y = F2.

X̂ = {0, 1, err}.
The channel is aBSC(ε), 0 ≤ ε ≤ 1/2.

C =
{
(0, 0, 0), (1, 1, 1)

}
.

x1

x3

x2

000

001

011

010

100

110

101

111

An error detecting decoder is then given by

DDET(y) ,





(0, 0, 0) if y = (0, 0, 0)

(1, 1, 1) if y = (1, 1, 1)

(err, err, err) otherwise

Note: If x = (0, 0, 0) and e = (1, 1, 1), then y = (1, 1, 1) and x̂ , DDET(y) = (1, 1, 1).

⇒ We do not detect that there were some errors!

⇒ In order to avoid this scenario as far as possible, codewords should be chosen to be “as far apart as

possible.”

Error Correcting Decoder
Consider the following setup:

U = X = Y = F2.

X̂ = {0, 1, ?}.
The channel is aBSC(ε), 0 ≤ ε ≤ 1/2.

C =
{
(0, 0, 0), (1, 1, 1)

}
. x1

x3

x2

000

001

011

010

100

110

101

111

An error correcting decoder is then given by

DDEC(y) ,




(0, 0, 0) if y ∈

{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)

}

(1, 1, 1) if y ∈
{
(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

Note: The above decoder makes amajority vote, i.e.,

if there are more 0s than 1s in y, then x̂ = (0, 0, 0);

if there are more 1s than 0s in y, then x̂ = (1, 1, 1).

Error Correcting Decoder
Consider the following setup:

U = X = Y = F2.

X̂ = {0, 1, ?}.
The channel is aBSC(ε), 0 ≤ ε ≤ 1/2.

C =
{
(0, 0, 0), (1, 1, 1)

}
. x1

x3

x2

000

001

011

010

100

110

101

111

An error correcting decoder is then given by

DDEC(y) ,




(0, 0, 0) if y ∈

{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)

}

(1, 1, 1) if y ∈
{
(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

Note: If two of more symbol errors happen, the above decoder will fail.

⇒ In order to avoid this scenario as far as possible, codewords should be chosen to

be “as far apart as possible.”

Error Correcting Decoder
Consider the following setup:

U = X = Y = F2.

X̂ = {0, 1, ?}.
The channel is aBSC(ε), 0 ≤ ε ≤ 1/2.

C =
{
(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)

}
. x1

x3

x2

101

010

011

110

100

001

111

000

Note:

If x = (0, 0, 0) and e = (1, 0, 0) then y = (1, 0, 0).

If x = (1, 0, 1) and e = (0, 0, 1) then y = (1, 0, 0).

If x = (1, 1, 0) and e = (0, 1, 0) then y = (1, 0, 0).

⇒ This code is not strong enough to correct a single symbol error.

⇒ However, it can detect a single symbol error.

What does information theory

promise about channel coding?

Information Theory

Channel
Decoding

Channel
Encoding

SinkSource Channel

Shannon (1948): it is a good idea to use channel codes!

Information Theory

0

[bits / channel use]

capacity Crate R

A channel is characterized by a numberC called the capacity.

A code is characterized by a numberR called the rate.

IfR < C: there are codes, encoders, and decoders such that

arbitrarily low error probabilities can be guaranteed (as long as

one allows arbitrarily long codes).

Shannon’s proof was though non-constructive, i.e. it was not clear

at all how to obtain specific well-performing finite-length codes

that possess efficient encoders and decoders.

Some notation

Some Notation

Let S be a discrete or continuous set. Let f : S → R be some function.

Notation:

Themaximum value of f will be denoted by

max
s∈S

f(s).

The set of locations where f takes on themaximum value is

{
s ∈ S

∣∣∣∣ f(s) = max
s′∈S

f(s′)

}
,

and will be denoted by

argmax
s∈S

f(s).

Some Notation
Note:

The expression argmaxs∈S f(s) gives back a set!

We will often assume that this set contains only one element, say s∗, and

sloppily write expressions like

s∗ , argmax
s∈S

f(s).

s

S s∗

max
s∈S

f(s)

argmax
s∈S

f(s) = {s∗}

or argmax
s∈S

f(s) = s∗

s

s∗2Ss∗1

max
s∈S

f(s)

argmax
s∈S

f(s) = {s∗1, s∗2}

Hamming distance and weight

Hamming Distance andWeight

LetA be some set and n a positive integer.

Definitions:

The Hamming distance between two vectors x,y ∈ An is defined to be

d(x,y) , dH(x,y) ,
∣∣{i | xi 6= yi}

∣∣.

The Hamming weight of a vector x ∈ An is defined to be

w(x) , wH(x) ,
∣∣{i | xi 6= 0}

∣∣.

(Assumption: 0 ∈ A.)

Hamming Distance andWeight

Example 1: LetA , {0, 1}, x , (0, 1, 1), y , (1, 0, 1).

⇒ dH(x,y) = 2.

⇒ wH(x) = 2.

⇒ wH(y) = 2.

Example 2: LetA , {0, 1, 2}, x , (2, 1, 2, 1, 0), y , (1, 2, 2, 0, 0).

⇒ dH(x,y) = 3.

⇒ wH(x) = 4.

⇒ wH(y) = 3.

Part 3

Maximum-likelihood (ML) decoding

Outline of Part 3

Definition of blockwise ML decoding

Blockwise ML decoding for BSC

Blockwise ML decoding as solving an integer linear program

Blockwise ML decoding as solving a linear program

Definition of blockwise ML decoding

Blockwise ML Decoding
Assumptions:

The channel is described by PY|X(y|x).
The codeC is used.

Definition: Blockwise maximum-likelihood (ML) decoding of the received

vector y yields the codeword estimate

x̂ML(y) , argmax
x∈C

PY|X(y|x).

Note: If all codewords are sent equally likely, then

x̂ML minimizes the block error probability,

i.e.,

x̂ML minimizesPr
(
x̂ML(Y) 6= X

)
.

Proof: Omitted.

Blockwise ML Decoding

Note: Besides blockwise ML decoding, there are also

symbolwise ML decoding,

blockwise MAP decoding,

symbolwise MAP decoding.

They all have their uses and are optimal in some suitable sense, but we

will not talk more about them in these lectures.

(MAP: maximum a-posteriori)

Blockwise ML Decoding for BSC

Definition (reminder): Blockwise maximum-likelihood (ML) decoding of

the received vector y yields the codeword estimate

x̂ML(y) , argmax
x∈C

PY|X(y|x).

Theorem: Assume that the channel is aBSC(ε), with 0 ≤ ε < 1/2.

Then

x̂ML(y) = argmin
x∈C

dH(x,y).

Note: Interestingly enough, the right-hand side of the above expression

is independent of ε as long as 0 ≤ ε < 1/2.

Blockwise ML Decoding for BSC
Proof: x̂ML(y) , argmax

x∈C
PY|X(y|x)

= argmax
x∈C

n∏

i=1

W (yi|xi)

(a)
= argmax

x∈C
log

(
n∏

i=1

W (yi|xi)

)

= argmax
x∈C

n∑

i=1

log
(
W (yi|xi)

)

(b)
= argmax

x∈C

(
n− dH(x,y)

)
· log(1− ε) + dH(x,y) · log(ε)

= argmax
x∈C

n · log(1− ε)− dH(x,y) · log
(
1− ε

ε

)

= argmax
x∈C

−dH(x,y) · log
(
1− ε

ε

)

(c)
= argmin

x∈C
dH(x,y).

Blockwise ML Decoding for BSC

Proof (continued):

Step (a) follows from the fact that log(·) is a strictly increasing function.
Step (b) follows from

log
(
W (yi|xi)

)
=




log(1− ε) if yi = xi

log(ε) if yi 6= xi

Step (c) follows from

1− ε

ε
> 1 ,

which implies

log

(
1− ε

ε

)
> 0 .

Blockwise ML Decoding for BSC
Note: Many papers on coding theory startwith the

minimum-distance decoding rule x̂(y) , argmin
x∈C

dH(x,y).

However, theminimum-distance decoding rule is optimal only for

certain setups, like the setup in the above theorem. In general, it is only

a decoding heuristic (often a good one) for channels with Y = X .

Theminimum-distance decoding rule can even be “totally useless”!

For example, for aBSC(ε)with 1/2 < ε ≤ 1 one obtains

x̂ML(y) , argmax
x∈C

PY|X(y|x)
= argmax

x∈C
dH(x,y).

(This is a consequence of log
(
1−ε
ε

)
< 0.)

Blockwise ML Decoding for BSC
Geometric picture for x̂ML(y) , argminx∈C dH(x,y):

points inX n

codewords, i.e., points inC

received vector y

The expression argminx∈C dH(x,y)means the following:

Compute dH(x,y) for every x ∈ C.

Take the x ∈ C for which dH(x,y) is minimized.

If there is a tie, we can either declare failure or randomly pick one of the

optimal codewords.

Blockwise ML Decoding for BSC
Example: minimum-distance decoding for

C ,
{
(0, 0, 0, 0, 0), (1, 1, 1, 0, 0), (0, 0, 1, 1, 1), (1, 1, 0, 1, 1)

}
.

Assume that the transmitted codeword is x = (0, 0, 1, 1, 1).

Scenario 1 Scenario 2 Scenario 3

e = (0, 1, 0, 0, 0) e = (0, 1, 0, 0, 1) e = (1, 1, 0, 0, 0)

→ y = (0, 1, 1, 1, 1) → y = (0, 1, 1, 1, 0) → y = (1, 1, 1, 1, 1)

dH
(
(0, 0, 0, 0, 0),y

)
= 4 = 3 = 5

dH
(
(1, 1, 1, 0, 0),y

)
= 3 = 2 = 2

dH
(
(0, 0, 1, 1, 1),y

)
= 1 = 2 = 2

dH
(
(1, 1, 0, 1, 1),y

)
= 2 = 3 = 1

Comment x̂ = x tie! x̂ 6= x

As we will see later on, this code has dmin(C) = 3 and so one bit flipwill be correctly decoded by a

minimum-distance decoder.

Potentially, a minimum-distance decoder can correct more bit flips, but there is no guarantee.

ML decoding as solving a linear program

ML Decoding as an Integer LP

For memoryless channels, blockwise ML decoding of a binary code can

be written as an integer linear program.

x̂block
ML (y) = argmax

x∈C
PY|X(y|x) = argmin

x∈C

n∑

i=1

xiλi,

where

λi , λi(yi) , log
PY |X(yi|0)
PY |X(yi|1)

.

ML Decoding as an Integer LP

Derivation (we assume to have a memoryless channel):

argmax
x∈C

PY|X(y|x)

= argmax
x∈C

log
n∏

i=1

PYi|Xi
(yi|xi)

= argmax
x∈C

n∑

i=1

logPYi|Xi
(yi|xi)

= argmax
x∈C

n∑

i=1

(
xi log

PYi|Xi
(yi|1)

PYi|Xi
(yi|0)

+ logPYi|Xi
(yi|0)

)

= argmax
x∈C

n∑

i=1

xi(−λi) = argmin
x∈C

n∑

i=1

xiλi.

ML Decoding as an LP

argmin
x∈C

n∑

i=1

λixi

∗
= arg min

x∈conv(C)

n∑

i=1

λixi

∗
= sign: This is an equality if there is a unique x ∈ C that

minimizes
∑n

i=1 λixi. Otherwise, the left-hand side is a

subset of the right-hand side.

x(1)

x(5)

x(2)

x(4)

x(3)

e.g.,

C =
{
x(1), . . . ,x(5)

}

Linear Programs (LPs)

argmax
ω∈A

n∑

i=1

ciωi

ω2

ω1

ω(1)

ω(5)

ω(2)

ω(3)

ω(4)

Linear Programs (LPs)

argmax
ω∈A

n∑

i=1

ciωi

ω2

c1

c2

ω1

ω(5)

ω(2)

ω(4)

ω(1)

ω(5)

ω(2)

ω(3)

ω(4) K⊥
2

K⊥
4

K⊥
5 ω(1)

ω(3)

K⊥
3

K⊥
1

ω(2) +K⊥
2

ω(3) + K⊥
3

ω(4) + K⊥
4

ω(5) +K⊥
5

ω(1) + K⊥
1

Part 4

Linear-programming decoding

Outline of Part 4

From blockwise ML decoding to linear-programming decoding

The fundamental polytope and the fundamental cone

ML Certificate Property

From blockwise ML decoding

to linear-programming decoding

ML Decoding as an LP

x̂block
ML (y) = arg min

x∈conv(C)

n∑

i=1

xiλi,

This is a linear program.

However, the

number of variables / equalities / inequalities

needed to describe the polytope conv(C) is (usually) exponential in n.

Relaxed Linear Programs

argmax
ω∈A

n∑

i=1

ciωi

ω2

ω1

Relaxed Linear Programs

argmax
ω∈A

n∑

i=1

ciωi

is replaced by

argmax
ω∈A′

n∑

i=1

ciωi

ω2

ω1

Relaxed Linear Programs

argmax
ω∈A

n∑

i=1

ciωi

is replaced by

argmax
ω∈A′

n∑

i=1

ciωi

ω2

ω1

Relaxed Linear Programs

argmax
ω∈A

n∑

i=1

ciωi

ω2

ω1

Relaxed Linear Programs

argmax
ω∈A

n∑

i=1

ciωi

is replaced by

argmax
ω∈A′

n∑

i=1

ciωi

ω2

ω1

LP Decoding

ω̂block
ML (y) = arg min

ω∈conv(C)

n∑

i=1

ωiλi.

A standard approach in optimization theory is then to relax the set

conv(C) to a set relax(conv(C))whose description complexity is much

lower:

ω̂LP(y) = arg min
ω∈relax(conv(C))

n∑

i=1

ωiλi.

Linear Programming Decoding

How do we obtain a suitable relaxation? The following approach was

proposed by Feldman / Karger / Wainwright and seems to work well for

low-density parity-check (LDPC) codes.

Before showing how this relaxation works, let us remember how we

define a code using a parity-check matrix.

LetH be a parity-check matrix, e.g.,

H =




1 1 1 0 0

0 1 0 1 1

0 0 1 1 1


 .

A vector x ∈ F5
2 is a codeword if and only if

HxT = 0T.

Linear Programming Decoding

In our case this means that x is a codeword if and only if x fulfills the

following three equations:

H =




1 1 1 0 0

0 1 0 1 1

0 0 1 1 1


 ⇒

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

x3 + x4 + x5 = 0 (mod 2)

Therefore,C can be seen as the intersection of three codes

C = C1 ∩ C2 ∩ C3,

where C1 ,
{
x ∈ F5

2

∣∣ h1x
T = 0 (mod 2)

}
,

C2 ,
{
x ∈ F5

2

∣∣ h2x
T = 0 (mod 2)

}
,

C3 ,
{
x ∈ F5

2

∣∣ h3x
T = 0 (mod 2)

}
.

Linear Programming Decoding

Let the relaxation relax(conv(C)) of conv(C) be the set of all vectors
ω ∈ R5 that fulfill three conditions:

H =




1 1 1 0 0

0 1 0 1 1

0 0 1 1 1


 ⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

C ⊂ conv(C) ⊆ relax(conv(C)) , conv(C1) ∩ conv(C2) ∩ conv(C3)︸ ︷︷ ︸
Fundamental polytopeP(H)

.

This relaxation turns out to have many desirable properties. Note that

the points inP(H) are called pseudo-codewords.

Blockwise ML Decoding vs. LP Decoding

Blockwise ML decoding:

x̂block
ML (y) = arg min

x∈conv(C)

n∑

i=1

xiλi.

LP decoding:

ω̂LP(y) = arg min
ω∈P(H)

n∑

i=1

ωiλi.

Blockwise ML Decoding vs. LP Decoding

Blockwise ML decoding:

x̂block
ML (y) = arg min

x∈conv(∩m
j=1Cj)

n∑

i=1

xiλi.

LP decoding:

ω̂LP(y) = arg min
ω∈∩m

j=1 conv(Cj)

n∑

i=1

ωiλi.

Fundamental polytope and fundamental code

Fundamental Polytope

H =




1 1 1 0 0

0 1 0 1 1

0 0 1 1 1




⇒ C1

⇒ C2

⇒ C3

⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ C=
m⋂

j=1

Cj ⇒ P(H)=
m⋂

j=1

conv(Cj)

︸ ︷︷ ︸
Fundamental polytope

0

FP

Fundamental Polytope / Cone

H =




1 1 1 0 0

0 1 0 1 1

0 0 1 1 1




⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ conic(C1)

⇒ conic(C2)

⇒ conic(C3)

⇒ P(H)=
m⋂

j=1

conv(Cj)

︸ ︷︷ ︸
Fundamental polytope

⇒ K(H)=
m⋂

j=1

conic(Cj)

︸ ︷︷ ︸
Fundamental cone

0

FP

0

FP
FC

Fundamental Polytope / Cone

Note: because for binary-input output-symmetric channels the analysis

of the fundamental polytope essentially boils down to the analysis of

the fundamental cone, all the points in the fundamental cone will also

be called pseudo-codewords.

Convex Hull of Simple Codes

LetC be defined by the parity-check matrix

H =
(
1 1

)
.

Then

C =
{
(0, 0), (1, 1)

}

and

conv(C) =



ω ∈ [0, 1]2

∣∣∣∣∣∣
−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0



 ,

where [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}.

Convex Hull of Simple Codes

LetC be defined by the parity-check matrix

H =
(
1 1 1

)
.

Then

C =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

and

conv(C) =





ω ∈ [0, 1]3

∣∣∣∣∣∣∣∣∣∣∣

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0

−ω1−ω2−ω3 ≥ −2





.

Conic Hull of Simple Codes

LetC be defined by the parity-check matrix

H =
(
1 1

)
.

Then

C =
{
(0, 0), (1, 1)

}

and

conic(C) =



ω ∈ R2

+

∣∣∣∣∣∣
−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0



 ,

whereR+ = {r ∈ R | r ≥ 0}.

Conic Hull of Simple Codes

LetC be defined by the parity-check matrix

H =
(
1 1 1

)
.

Then

C =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

and

conic(C) =




ω ∈ R3

+

∣∣∣∣∣∣∣∣

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0





.

A Simple Code

Let us consider the length-3 codeC defined by the parity-check matrix

H =




1 1 0

1 1 1

0 1 1


 .

The codeC can be written asC = C1 ∩ C2 ∩ C3 with

C1 =
{
(0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1)

}

C2 =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

C3 =
{
(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)

}

A Simple Code

The fundamental polytope isP(H) = conv(C1) ∩ conv(C2) ∩ conv(C3)with

conv(C1) = conv
({

(0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1)
})

=



ω ∈ [0, 1]3

∣∣∣∣∣∣
−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0





conv(C2) = conv
({

(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)
})

=





ω ∈ [0, 1]3

∣∣∣∣∣∣∣∣∣∣∣

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0

−ω1−ω2−ω3 ≥ −2





conv(C3) = conv
({

(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)
})

=



ω ∈ [0, 1]3

∣∣∣∣∣∣
−ω2+ω3 ≥ 0

+ω2−ω3 ≥ 0





A Simple Code

ω1

ω3

(0, 0, 0)
ω1

ω3

(0, 0, 0)

(0, 0, 1)

(1, 1, 1)

(1, 1, 0) (1, 1, 0)

(1, 0, 1)

ω1

ω3

(0, 0, 0)
ω1

ω3

(0, 0, 0)

(1, 1, 1)

`

2
3
, 2
3
, 2
3

´

(1, 0, 0)

(0, 1, 1)

(0, 1, 1)

ω2 ω2

ω2 ω2

conv(C1) conv(C2)

conv(C3) P(H)

ML certificate property

ML Certificate Property

Theorem:

LP decoding has the ML certificate property:

if LP decoding outputs a codeword,

it is guaranteed to be the blockwise ML codeword.

Note: This does notmean that if LP decoding outputs a codeword that

LP decoding was successful. The reason for this is that blockwise ML

decoding might fail, i.e., output a codeword that is different from the

transmitted codeword.

Equivalence of decoders for the BEC

Equivalence of Decoders for the BEC

For the BEC, the following decoders give the same decoding result:

sum-product algorithm (SPA) decoding,∗

max-product algorithm (MPA) decoding,∗

peeling decoding,∗

linear programming (LP) decoding,

symbol-wise graph-cover decoding,

block-wise graph-cover decoding.

Proof: Omitted.

∗ After convergence. For the BEC, one can show that SPA decoding (with flooding schedule), MPA decoding

(with flooding schedule), and the peeling decoder converge in a finite number of iterations. (SPA decoding

and MPA decoding converge after the same number of iterations, but the the peeling decoder might

converge after a different number of iterations.)

References (1/2)
LP decoding was introduced by Feldman, Wainwright, and Karger:

J. Feldman, Decoding Error-Correcting Codes via Linear Programming,

Ph.D. thesis, Dept. of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, 2003.

J. Feldman, M. J. Wainwright and D. R. Karger, “Using linear programming

to decode binary linear codes,” IEEE Trans. Inf. Theory, vol. 51, no. 3,

pp. 954–972, Mar. 2005.

The relaxed polytope introduced by Feldman, Wainwright, and Karger

happened to be equivalent to the fundamental polytope introduced in a

different context by Koetter and Vontobel, and nowadays the relaxed polytope

in LP decoding is typically called the fundamental polytope.

R. Koetter and P. O. Vontobel, “Graph covers and iterative decoding of

finite-length codes,” Proc. 3rd Intern. Symp. on Turbo Codes and Related

Topics, Brest, France, pp. 75–82, Sep. 1–5, 2003.

References (2/2)

The notion of LP decoding appears also in the context of compressed sensing:

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.

Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

This notion of LP decoding is rather different than the notion of LP decoding of

LDPC codes as discussed in these slides, but there are mathematical connections

between the two, as explained in the following paper:

A. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC codes for

compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 5,

pp. 3093–3114, May 2012.

In particular, this paper shows how to construct

“good” compressed sensing measurement matrices

based on

“good” low-density parity-check matrices.

Part 5

Graphical representation of codes

Outline of Part 5

Graphical representation of codes

Another example for graphical representation of a code

Graphical representation of codeword indicator function and

pseudo-codeword indicator function

Binary Linear Codes

LetH be a parity-check matrix, e.g.,

H =


1 1 1 0 0

0 1 0 1 1


 .

The codeC described byH is then

C =
{
(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣H · xT = 0T (mod 2)
}
.

A vector x ∈ F5
2 is a codeword if and only if

H · xT = 0T (mod 2).

Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two

equations:

H =


1 1 1 0 0

0 1 0 1 1


 ⇒ x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

In summary,

C =
{
(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣H · xT = 0T (mod 2)
}

=



(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣∣∣∣
x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)



 .

Binary Linear Codes

Defining the codesC1 andC2 where

C1=
{
(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣ x1 + x2 + x3 = 0 (mod 2)
}
,

C2=
{
(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣ x2 + x4 + x5 = 0 (mod 2)
}
,

the codeC can be written as the intersection ofC1 andC2:

C = C1 ∩ C2.

Graphical Representation of a Code

H =


1 1 1 0 0

0 1 0 1 1




0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1

1 1 1 1

11 1 1

11 1 1

1 11 1 x1

x2

x3

x4

x5

C = C1 ∩ C2

Another example

for graphical representation of a code

Graphical Representation of a Code
Consider the binary linear codeC defined by the parity-check matrix

H =




1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0

0 0 0 0 0 1 1




.

This code is also defined by the following Tanner graph:

X1

X3

X7X2

X5

X6

X4

Graphical representation

of codeword indicator function

and pseudo-codeword indicator function

Factor graph

I2(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I1(x1, x2, x5)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
[
(x1, x2, x5) ∈ C′

1

]
·

[
(x2, x3, x4) ∈ C′

2

]
·

[
(x4, x5, x6) ∈ C′

3

]

Note: xi ∈ {0, 1}

H =




1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1




Notation: C′
1 is C1 punctured at all positions ex-

cept at positions 1, 2, and 5. C′
2 and C′

3 are simi-

larly defined.

Pseudo-Codewords /
Fundamental Polytope

ω1

ω2

ω3

ω4

ω5

ω6

I3(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I3(x1, x2, x5) Î3(ω1, ω2, ω5)

Î3(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
[
(x1, x2, x5) ∈ C′

1

]
·

[
(x2, x3, x4) ∈ C′

2

]
·

[
(x4, x5, x6) ∈ C′

3

]

Note: xi ∈ {0, 1}

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
[
(ω1, ω2, ω5) ∈ conv(C′

1)
]
·

[
(ω2, ω3, ω4) ∈ conv(C′

2)
]
·

[
(ω4, ω5, ω6) ∈ conv(C′

3)
]

Note: 0 ≤ ωi ≤ 1

Pseudo-Codewords /
Fundamental Cone

ω1

ω2

ω3

ω4

ω5

ω6

I3(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I3(x1, x2, x5) Î3(ω1, ω2, ω5)

Î3(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
[
(x1, x2, x5) ∈ C′

1

]
·

[
(x2, x3, x4) ∈ C′

2

]
·

[
(x4, x5, x6) ∈ C′

3

]

Note: xi ∈ {0, 1}

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
[
(ω1, ω2, ω5) ∈ conic(C′

1)
]
·

[
(ω2, ω3, ω4) ∈ conic(C′

2)
]
·

[
(ω4, ω5, ω6) ∈ conic(C′

3)
]

Note: 0 ≤ ωi

Pseudo-Codewords /
Fundamental Cone
E.g.,

[
(ω1, ω2, ω5) ∈ conic(C′

1)
]
= 1

if and only if

ω1 ≤ ω2 + ω5

ω2 ≤ ω1 + ω5

ω5 ≤ ω1 + ω2

ω1 ≥ 0

ω2 ≥ 0

ω3 ≥ 0

ω1

ω2

ω3

ω4

ω5

ω6

Î1(ω1, ω2, ω5)

Î2(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
[
(ω1, ω2, ω5) ∈ conic(C′

1)
]
·

[
(ω2, ω3, ω4) ∈ conic(C′

2)
]
·

[
(ω4, ω5, ω6) ∈ conic(C′

3)
]

Note: 0 ≤ ωi

Part 6

Graph-cover decoding

Outline of Part 6

Definition of graph covers

Graph-cover (GC) decoding

Equivalence of GC decoding and LP decoding

Definition of graph covers

Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! · 2! · 2! · 2! · 2! = (2!)5 double covers.

Graph Covers

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph has also triple covers, quadruple covers,

quintuple covers, etc.

Graph Covers

original graph
(possible)

M -fold cover of
original graph

· · ·

· · · · · ·

· · ·

M

π2 π3

π1

π5

π4

AnM-fold cover is also called a cover of degreeM . Do not confuse this

degree with the degree of a vertex!

Note: a graph GwithE edges has (M !)E M-fold covers.

Graph Cover Hierarchy

M Number ofM-fold covers

1 (1!)E

2 (2!)E

3 (3!)E

Graph-cover decoding

Towards Blockwise Graph-Cover Decoding

Remember, blockwise ML decoding can be for-

mulated as follows:

Receive y.

Compute the LLR vector λ.

Compute

x̂block
MAP(y) , argmin

x∈C

〈
λ,x

〉
,

where 〈 · , · 〉 denotes the standard inner product.

X1

X2

X3

(λ1, λ2, λ3)

(y1, y2, y3)

(x1, x2, x3)

Blockwise Graph-Cover Decoding

X1

X2

X3

(λ1:λ1, λ2:λ2, λ3:λ3)(λ1, λ2, λ3)

· · ·

(y1, y2, y3)

(x1, x2, x3)

(x1,1:x1,2, x2,1:x2,2, x3,1:x3,2)

(x1,1:x1,2:x1,3, x2,1:x2,2:x2,3, x3,1:x3,2:x3,3)

(λ1:λ1:λ1, λ2:λ2:λ2, λ3:λ3:λ3)

X1

X3

X2

X3

X2

X1

Blockwise Graph-Cover Decoding

X1

X2

X3

(λ1:λ1, λ2:λ2, λ3:λ3)(λ1, λ2, λ3)

· · ·

(y1, y2, y3)

(x1, x2, x3)

ˆ̃xGC

(x1,1:x1,2:x1,3, x2,1:x2,2:x2,3, x3,1:x3,2:x3,3)

(x1,1:x1,2, x2,1:x2,2, x3,1:x3,2)

(λ1:λ1:λ1, λ2:λ2:λ2, λ3:λ3:λ3)

X1

X3

X2

X3

X2

X1

Blockwise Graph-Cover Decoding

We now define the graph-cover decoder like this:

Receive y.

Compute the LLR vector λ.

Let ˆ̃xGC(y) be the vector x̃ of the pair (T̃ , x̃) that minimizes

min
(T̃ ,x̃): T̃ is a finite cover of T (H), x̃∈C(T̃)

1

deg(T̃)

〈
λ̃, x̃

〉
.

Here we used the following notation:

λ̃ is the lifting of λ to T̃ .

C(T̃) is the code defined by the Tanner graph T̃ .

deg(T̃) is the degree of the cover T̃ over T (H).

Equivalence of GC decoding and LP decoding

Blockwise Graph-Cover Decoding

What is the connection to LP decoding?

We start by studying codewords in graph covers of some Tanner graph.

Codewords in Graph Covers

X1

X3

X7X2

X5

X6

X4
X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

Base Tanner graph

of a length-7 code

Possible double cover of

the base factor graph

Let us study the codes defined by the graph covers of this base

Tanner/factor graph.

Codewords in Graph Covers

Obviously, any codeword in the base normal factor graph can be lifted

to a codeword in the double cover of the base normal graph.

X1

X3

X7X2

X5

X6

X4 ⇒ X′′
1 X′

1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)

Codewords in Graph Covers

But in the double cover of the base normal factor graph there are also

codewords that are not liftings of codewords in the base factor graph!

X1

X3

X7X2

X5

X6

X4
?⇐ X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)

Codewords in Graph Covers

But in the double cover of the base normal factor graph there are also

codewords that are not liftings of codewords in the base factor graph!

X1

X3

X7X2

X5

X6

X4
?⇐ X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

What about(
1

2
,
1

2
,
1

2
,
2

2
,
1

2
,
1

2
,
1

2

)
? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)

Codewords in Graph Covers

More formally, the

pseudo-codewordω = (ω1, . . . , ωn) ∈ Rn

associated with a

valid configuration x̃ in someM-fold cover G̃

is defined to be the vector

ω , ϕM(G̃, x̃) with ωi ,
1

M

M∑

m=1

x̃i,m.

Codewords in Graph Covers

Theorem:

LetP , P(H) be the fundamental polytope of a parity-check

matrixH.

LetP ′ be the set of all pseudo-codewords obtained through

codewords in finite covers.

Then,P ′ is dense inP , i.e.

P ′ = P ∩Qn

P = closure(P ′).

Moreover, note that all vertices ofP are vectors with rational entries

and are therefore also inP ′.

Blockwise Graph-Cover Decoding

What is the connection to LP decoding?

Letω , ω(x̃) ∈ Rn be the pseudo-codeword associated with x̃, i.e.,

ωi(x̃) =
1

deg(T̃)

deg(T̃)∑

ℓ=1

x̃i,ℓ.

This helps in reformulating the above cost function:

1

deg(T̃)

〈
λ̃, x̃

〉
=
〈
λ,ω(x̃)

〉
.

Derivation:
1

deg(T̃)

〈
λ̃, x̃

〉
=

1

deg(T̃)

n∑

i=1

deg(T̃)∑

ℓ=1

λ̃i,ℓx̃i,ℓ =

n∑

i=1

λi
1

deg(T̃)

deg(T̃)∑

ℓ=1

x̃i,ℓ

=
〈
λ,ω(x̃)

〉
.

Blockwise Graph-Cover Decoding

X1

X2

X3

(λ1, λ2, λ3)

· · ·

(y1, y2, y3)

(ω1, ω2, ω3)

(λ1, λ2, λ3) (λ1, λ2, λ3)

(ω1, ω2, ω3)

(ω1, ω2, ω3)

(ω̂1, ω̂2, ω̂3)

X1

X3

X2

X3

X2

X1

Blockwise Graph-Cover Decoding

Next, we have to understand the following set:

P ′(T) ,
{
ω(x̃) ∈ Rn

∣∣ x̃ ∈ C(T̃), where T̃ is some finite cover of T
}
.

However, as we saw before:

P ′ = P ∩Qn.

Blockwise Graph-Cover Decoding

Using the above observation we can reformulate the minimization

problem solved by the blockwise graph-cover decoder to read

min(T̃ ,x̃): T̃ is a finite cover of T (H), x̃∈C(T̃)
1

deg(T̃)

〈
λ̃, x̃

〉

= min(T̃ ,x̃): T̃ is a finite cover of T (H), x̃∈C(T̃)
〈
λ,ω(x̃)

〉

= minω∈P ′(T (H))

〈
λ,ω

〉

= minω∈P(T (H))

〈
λ,ω

〉
.

However, the last line is equivalent to the minimization problem solved

by the LP decoder!

Fundamental Polytope / Decision Regions

Consider again the following length-7 code:

X1

X3

X7X2

X5

X6

X4

Fundamental Polytope / Decision Regions

ω567 x567

x(1)

x(4)

x(2)

x(3)

ω(5)

x(4)x(2)

x(0) x(1)

ω4ω4

ω123ω123

λ123

λ567

Dx(1)

Dx(3)

Dx(2)

Dx(4)

λ123

λ567

Dx(1)Dx(2)

Dx(4)

Dω(5)

Dx(3)

−2λ4

−2λ4

2λ4

2λ4

Final Comment

In the same way that GC decoding gives an alternative view of LP decoding,

graph-cover interpretations of other relaxed linear programs can be given.

References
[1] R. Koetter and P. O. Vontobel, “Graph covers and iterative decoding of finite-length codes,” Proc. 3rd

Intern. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 75–82, Sep. 1–5, 2003.

[2] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length analysis of message-passing

iterative decoding of LDPC codes,” http://www.arxiv.org/abs/cs.IT/0512078,

Dec. 2005.

[3] P. O. Vontobel, “Counting in graph covers: a combinatorial characterization of the Bethe entropy

function,” IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 6018–6048, Sep. 2013.

Note:

What is called “graph-cover decoding” in [2] is called “blockwise graph-cover decoding” in [3], in

order to distinguish it from “symbol-wise graph-cover decoding” that is also introduced in [3].

A slight technical difference between [2] and [3] is that in [2] the minimum in the definition of

(blockwise) graph-cover decoding is over all finite covers, whereas in [3] the minimum in the

definition of blockwise graph-cover decoding is over all finiteM-covers, wherebyM → ∞.

